
Department of Informatics

Robust and Scalable
Content-and-Structure Indexing of
Semi-Structured Hierarchical Data

Dissertation submitted to the Faculty of Business,
Economics and Informatics
of the University of Zurich

to obtain the degree of
Doktor der Wissenschaften, Dr. sc.
(corresponds to Doctor of Science, PhD)

presented by

Kevin Wellenzohn

from South Tyrol, Italy

approved in December, 2021

at the request of

Prof. Dr. Michael H. Böhlen
Dr. Sven Helmer
Prof. Dr. Viktor Leis

iii

Abstract

Large amounts of semi-structured, hierarchical data are generated every day. A frequent type
of queries on such data are Content-and-Structure (CAS) queries that consist of two predicates:
a value predicate on the content and a path predicate on the hierarchical structure of the data.
CAS queries select data items based on their value for some attribute and their location in the
hierarchical structure of the data. Dedicated CAS indexes exist to evaluate CAS queries, but they
partially or completely lack two important qualities that we seek in a CAS index: robustness and
scalability.

Robustness means that a CAS index optimizes the average runtime across all queries and not
the runtime of individual queries. Scalability means that a CAS index can cope with big semi-
structured, hierarchical data. A scalable CAS index can be efficiently bulk-loaded to create a
new index for large datasets and it supports efficient updates to keep up with the influx of new
data.

Together, robustness and scalability make a CAS index useful in real-world use cases. Robust-
ness ensures that the index can deal with a wide variety of CAS queries in an efficient way, while
scalability makes sure that the index can keep up with the increasing amount of semi-structured,
hierarchical data. This thesis presents the first CAS index that offers robust CAS query perfor-
mance and scales to big semi-structured, hierarchical data.

The robustness of our solution is rooted in the observation that existing CAS indexes fail to
integrate the content and structure of the data in one index without prioritizing one of the two

iv

dimensions (paths or values). Consequently, to offer robust CAS query performance we develop
a novel interleaving scheme, called dynamic interleaving, that interleaves the binary represen-
tation of the paths and values of data items in a well-balanced way without prioritizing one of
the dimensions. This is challenging because of the different characteristics of paths and values:
while the paths are long sequences of node labels, the values are basic data types, like numbers,
short strings, etc. Our dynamic interleaving accounts for these differences by adapting to the data
distribution and skipping long common prefixes in the paths and values. We store dynamically-
interleaved keys in our trie-based Robust Content-and-Structure (RCAS) index to query them
efficiently. Its trie-based structure allows our index to efficiently evaluate the value and path
predicates of CAS queries using a mix of range and prefix searches, respectively. Since the keys
are dynamically interleaved, we can evaluate the two predicates simultaneously to avoid large
intermediate results and offer robust query performance.

To scale our index to large datasets we store our RCAS index compactly on block-based storage
devices. We propose an efficient bulk-loading algorithm for our index that uses several tech-
niques to optimize the CPU, disk, and memory usage of the algorithm. The algorithm has a small
memory footprint and optimally uses the remaining memory to curb the algorithm’s disk I/O. We
develop two algorithms to restructure the RCAS index when the index is updated. The first al-
gorithm optimizes for query performance at the expense of update performance and the second
algorithm optimizes for update performance while still achieving good query performance in
practice.

We analytically prove the robustness and scalability of our index and confirm these results ex-
perimentally by indexing and querying, among other things, data from the Software Heritage
archive, which is the world’s largest publicly-available software archive.

To Katrin

vii

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Michael H. Böhlen, for his guidance
and constructive criticism throughout my PhD. Thank you for never settling for less when more
was possible.

I would like to thank Dr. Sven Helmer, who, after supervising already my Bachelor’s thesis, has
agreed to co-advise me again during my PhD. Thank you for introducing me to research and
showing me how much fun it can be.

A special thanks to Prof. Dr. Viktor Leis for agreeing to be the co-advisor of my PhD thesis and
to Prof. Dr. Thomas Fritz for chairing my PhD thesis defense.

Many thanks to Prof. Dr. Johann Gamper for always looking out for me and nudging me in the
right direction at difficult crossroads in my (academic) career.

I would like to thank my co-authors for the valuable discussions and their contributions. In
particular, thank you to Anton Dignös, Antoine Pietri, and Stefano Zacchiroli for their help.

Thank you to all my current and former colleagues at the DBTG group. I am deeply grateful for
all the cheerful discussions and the great time that we had inside and outside the office.

Lastly, I am truly indebted to my partner, Katrin. Thank you for your love and support.

Kevin Wellenzohn
Zurich, September 2021

CONTENTS ix

Contents

Abstract iii

Acknowledgments vii

I Synopsis 1

1 Introduction 3

1.1 Running Example . 8

1.2 Related Work . 10

1.2.1 CAS Indexing . 10

1.2.2 Linearizing Multi-Dimensional Keys 12

1.2.3 Building and Updating Indexes . 15

1.3 Challenges . 16

2 Contributions 19

2.1 Dynamic Interleaving . 20

2.2 Robust Content-and-Structure (RCAS) Index 22

2.3 Updating the RCAS Index . 25

2.4 Scalable RCAS+ Index . 28

x CONTENTS

3 Thesis Roadmap 31

4 Conclusion 33

4.1 Limitations . 33

4.2 Summary . 35

4.3 Future Work . 36

II Publications 39

A Dynamic Interleaving of Content and Structure for Robust Indexing of Semi-
Structured Hierarchical Data 41

A.1 Introduction . 42

A.2 Running Example . 44

A.3 Related Work . 45

A.4 Background . 47

A.5 Dynamic Interleaving . 50

A.5.1 Partitioning by Discriminative Bytes . 51

A.5.2 Interleaving . 54

A.5.3 Efficiency of Interleavings . 55

A.6 RCAS Index . 59

A.6.1 Trie-Based Structure of RCAS . 59

A.6.2 Physical Node Layout . 60

A.6.3 Bulk-Loading RCAS . 61

A.6.4 Querying RCAS . 64

A.7 Experimental Evaluation . 67

A.7.1 Setup and Datasets . 67

A.7.2 Impact of Datasets on RCAS’s Structure 68

A.7.3 Robustness . 71

A.7.4 Evaluation of Cost Model . 74

A.7.5 Space Consumption and Scalability . 75

A.7.6 Summary . 76

A.8 Conclusion and Outlook . 77

CONTENTS xi

B Inserting Keys into the Robust Content-and-Structure (RCAS) Index 79

B.1 Introduction . 80

B.2 Background . 81

B.3 Insertion of New Keys . 83

B.4 Index Restructuring during Insertion . 84

B.4.1 Strict Restructuring . 85

B.4.2 Lazy Restructuring . 86

B.5 Utilizing an Auxiliary Index . 88

B.6 Analysis . 90

B.7 Experimental Evaluation . 91

B.7.1 Runtime of Strict and Lazy Restructuring 91

B.7.2 Query Runtime . 92

B.7.3 Merging of Auxiliary and Main Index 94

B.7.4 Summary . 95

B.8 Related Work . 95

B.9 Conclusion and Outlook . 96

C Scalable Content-and-Structure Indexing 97

C.1 Introduction . 98

C.2 Application Scenario . 100

C.3 Background . 101

C.3.1 Notation & Terminology . 101

C.3.2 Dynamic Interleaving in the RCAS Index 103

C.4 The Scalable RCAS+ Index . 104

C.4.1 Depth-First Bulk-Loading . 105

C.4.2 Lazy Interleaving . 109

C.4.3 Node Clustering . 110

C.5 Proactive Partitioning . 110

C.5.1 Implementation . 111

C.5.2 Properties of the Partitioning . 112

C.6 Front-Loading . 114

C.6.1 Implementation . 115

xii CONTENTS

C.6.2 Analysis . 116

C.7 Analytical Evaluation . 117
C.7.1 I/O Overhead . 117
C.7.2 Space Overhead . 119

C.8 Experimental Evaluation . 119
C.8.1 Scalability of Depth-First Bulk-Loading 120
C.8.2 Query Performance . 121
C.8.3 Node Clustering . 122
C.8.4 Lazy Interleaving . 122
C.8.5 Proactive Partitioning . 123
C.8.6 Front-Loading . 125
C.8.7 Cost Model . 126
C.8.8 Summary . 127

C.9 Related Work . 127

C.10 Conclusion and Outlook . 129

D Curriculum Vitae 131

Bibliography 135

Part I

Synopsis

3

CHAPTER 1

Introduction

A large part of real-world data does not follow the rigid structure of tables found in relational
database management systems. Instead, a substantial amount of data is semi-structured, which
means that each data item is stored with a schema that defines its structure [LH19]. Data items
are marked-up with labels and annotated with attributes to make them self-descriptive such that
the data can be interpreted by humans and machines alike. Since data items can be nested, this
leads to a hierarchical structure. A data item has two important dimensions: its content and its
location in the hierarchical structure. The content of a data item stores its actual information and
its location in the hierarchical structure is the context that is required to interpret the data item.
Without its structure, a data item cannot be interpreted and without its content, the item carries
no information.

Semi-structured, hierarchical data can be found in a wide range of application domains. In
engineering, e.g., a bill-of-materials (BOM) is semi-structured and describes the hierarchical
assembly of components into a final product, where each component may have a distinct set of
attributes [BFF+15]. For example, the BOM of a car shows that the car is assembled of an engine
and the chassis (among other things), and the chassis itself is assembled of tires, etc. Different
pieces of information are recorded for different components: for the tires, e.g., the BOM records

4 Chapter 1. Introduction

<bom>
<car>

<body weight="325000g" />
<chassis>

<tire rimsize="17in" maxspeed="240kmh" />
<axle diameter="2in" />

</chassis>
<engine torque="660Nm" power="615kW">

<cylinder capacity="500cc" />
<piston />
<oilpan capacity="5500ml" />

</engine>
<interior>

<rearmirror weight="500g" />
<seat material="polyester" quantity="5" />
<seatbelt type="three-point" />
<steeringwheel material="leather" />

</interior>
</car>

</bom>

(a) A bill-of-materials (BOM) in XML format.

/

arch/

arm64/

kernel/

acpi.c

crypto/
ecc.c

ecc.h

fs/

ext2/

ext2.h

ext4/

inode.c

resize.c

README

2020-09-30

2021-03-19

2021-04-06

2021-04-06

2021-03-27

2020-12-16

2018-09-04

Modification
date:

(b) Subset of files in the Linux kernel.

{ "created_at": "Thu Apr 06 15:24:15 +0000 2017",
"user": { "id": 2244994945, "name": "Twitter Dev" },
"text": "Today we’re sharing our vision for the future of the Twitter API platform! https://t

.co/XweGngmxlP",
"entities": {

"urls": [
{ "url": "https://t.co/XweGngmxlP",

"unwound": {
"url": "https://cards.twitter.com/cards/18ce53wgo4h/3xo1c",
"title": "Building the Future of the Twitter API Platform" }}]

}
}

(c) A tweet in JSON format.

Figure 1.1: Examples of semi-structured, hierarchical data.

their profile, rim size, and maximum speed, while for the engine the BOM records its power,
torque, etc. Figure 1.1a shows an example of a BOM of a car in the XML storage format. The
BOM is self-descriptive due to its hierarchical, semi-structured model. The labels of the marked-
up data items (e.g., <tire>) describe a component in the BOM and the nesting of tags describes
the hierarchical assembly of components. Data items can have attributes (e.g., weight, capacity,
etc.) that describe a property of the component and each component in the car has its own set of
attributes. Each component in the BOM is described by its location in the hierarchical structure
and its set of attributes. For example, the tires are part of the car’s chassis, evidenced by the path
/bom/car/chassis/tire, and are characterized by their attributes: they have a rim size
of 17 inches and a maximum speed of 240 kilometers per hour. Another application domain of
semi-structured, hierarchical data is the web since semi-structured hierarchical data-formats like

5

XML, and more recently, JSON are heavily used as data-interchange formats. Figure 1.1c shows
a tweet retrieved through Twitter’s API in the JSON format. The tweet’s created_at attribute
shows that the tweet was posted on 2017-04-06; its user attribute is nested and shows the ID
of the user who posted it (2244994945) and its name (“Twitter Dev”). Web sites themselves
are semi-structured documents since they are written in HTML, which is a hierarchical mark-up
language similar to XML. File systems are another example where data items (i.e., files) are
organized hierarchically. For example, Unix-like operating systems store configuration files in
the folder /etc, personal files in /home, etc., and users can freely create more folders and
nest them arbitrarily. Lastly, version control systems like git, svn, etc. store the hierarchical
structure of software repositories and additional information such as when a file was updated,
who updated it, etc. Figure 1.1b shows a subset of the files in the Linux kernel and when they
were last updated at the time of writing according to the Linux git repository. The path of a file
helps to explain what part of the kernel is implemented by the file. For example, just by looking
at the file resize.c it is not clear what exactly is resized by this code, but knowing its full path
/fs/ext4/resize.c it is clear that the code is used to resize the ext4 filesystem.

Due to the surge of semi-structured hierarchical data, database researchers and vendors have
developed systems and techniques to efficiently store, index, and query this kind of data with
a particular focus on XML and JSON data. Existing relational database systems like Oracle
and PostgreSQL have been extended to support XML and JSON data, while systems like Natix
[FHK+02] and Sedna [TSK+10] were developed from the ground up as native XML stores.
Recently, a new class of NoSQL systems has emerged that addresses the need to handle big
(semi-structured hierarchical) data [DCL18]. For example, new document stores like MongoDB
and Couchbase Server address the need to natively manage JSON documents at scale. In this
thesis we do not focus on one particular type of semi-structured, hierarchical data (e.g., XML or
JSON) and we do not target one specific type of database system (e.g., native document stores).
Instead, we look at the problem of indexing semi-structured hierarchical data irrespective of how
and where the data is stored.

Increasing interest in semi-structured hierarchical data has lead to a new set of query lan-
guages that address the characteristics of the data. Query languages like XPath [CD99], XQuery
[BCF+10], and JSONiq [FF13] have been developed that allow fine-grained, navigational access
to semi-structured hierarchical data. These languages offer sophisticated constructs to filter data
items based on their content and their location in the hierarchical structure of the data by specify-
ing their relationship to other data items (e.g., parent-child, ancestor-descendant, and sometimes

6 Chapter 1. Introduction

sibling relationships). In this thesis we focus on Content-and-Structure (CAS) queries [MHSB15]
that filter data items based on their location in the hierarchical structure and their value for some
attribute. CAS queries consist of a path predicate and a value predicate. The path predicate is
expressed as a query path that matches the paths of all wanted data items. A query path consists
of node labels that are connected through parent-child or ancestor-descendant relationships to
widen the search when the exact location of a data item is not known in the hierarchical struc-
ture. For example, the query path /bom/car//bolt contains the parent-child relationship
/ and the ancestor-descendant relationship // (also known as the descendant axis), where the
latter can skip zero to any number of node labels. As a result, this query path matches paths like
/bom/car/bolt, /bom/car/engine/bolt, etc. In addition, wildcards can be used to
skip one node label fully or partially (e.g., /ext*/app.c matches the paths /ext4/app.c,
/extension/app.c, etc.). On the other hand, the value predicate refers to some attribute A of
the data and is expressed as a range predicate x≤ A≤ y that matches all data items whose value
for attribute A is between x and y. For example, the value predicate 1000 ≤ weight ≤ 2000
selects all data items whose weight is between 1000 and 2000 grams. CAS queries can appear
as building blocks for more complex twig-pattern queries [BKH+17] that specify tree-shaped
patterns and that are matched against the hierarchical data stored in the database.

Answering queries on big semi-structured, hierarchical data is expensive unless the data is in-
dexed. A number of techniques have been proposed to index the content or the structure of
semi-structured hierarchical data, see [BKH+17, MHSB15] for good overviews. The DataGuide
[GW97] and its derivatives, for example, are structural indexes that summarize all the paths in
the data, but they do not index the content of the data. Pure content indexes such as B+ trees and
similar index structures are used to index all the values in the data, but they ignore its structure.
These indexes cannot answer CAS queries efficiently because they ignore one of the two dimen-
sions of the semi-structured, hierarchical data (either its content or its structure). A number of
approaches have been proposed that index the content and structure of the data (called CAS in-
dexes [MHSB15]). Existing CAS indexes [CSF+01,KKNR04,LAAE06,MHSB15,STR+15] do
not have robust CAS query performance because they either build separate indexes for the content
and structure that need to be joined [KKNR04,MHSB15] or they fix the order of the dimensions a
priori (i.e., they first index the content and then the structure, or vice versa) [CSF+01,LAAE06].
This fails for CAS queries that have a high selectivity1 for their individual path and value pred-

1The selectivity of a predicate is the fraction of all data items for which the predicate returns true. A predicate
with high selectivity matches many data items.

7

icates, but a low final selectivity because evaluating each predicate individually leads to large
intermediate results that need to be narrowed down to a small final result.

We look for two qualities in a CAS index that we found partially or completely missing in existing
CAS indexes: robustness and scalability. Since these terms are not well-defined in the literature,
we provide our own definitions:

Robustness: We call a CAS index robust if – in the absence of any information about the query
workload – the index optimizes the average query runtime over all queries.

Scalability: We call a CAS index scalable if (i) it is not constrained by the size of the available
memory, (ii) the index supports bulk-loading for large datasets, and (iii) the index
can be updated efficiently.

Robustness and scalability make a CAS index useful in practice. Robust query performance
makes sure that a CAS index can efficiently answer a wide variety of CAS queries. The goal of
a robust CAS index is not to be the fastest index for every single CAS query, instead we want to
have the best performance, on average. Not knowing the query workload beforehand, a robust
CAS index must be prepared to answer ad-hoc CAS queries efficiently. This is especially useful
in exploratory data analysis when users do not know the data and pose a series of queries to
familiarize themselves with it.

Scalability means that a CAS index works for large real-world datasets. We focus on large
datasets that can be managed on a single machine, we do not consider distributed setups. In this
thesis we work, e.g., with semi-structured, hierarchical data from the Software Heritage (SWH)
archive [DCZ17,PSZ20], which is the world’s largest publicly-available software archive. At the
time of writing, SWH has crawled 156 million software repositories from places like GitHub,
GitLab, etc., and has stored 2.1 billion commits and 10 billion unique source code files, and
these numbers are growing daily. To operate a CAS index at this scale we need an index that is
not constrained by the size of the available memory on a single machine, that can be efficiently
created for large datasets, and that can keep up with the influx of new data.

This thesis is about developing a robust and scalable CAS index for semi-structured, hierarchical
data. We analytically prove the robustness and scalability of our index and confirm these results
experimentally by indexing, among other things, data from the SWH archive.

8 Chapter 1. Introduction

1.1 Running Example

We consider a company that stores the bills of materials (BOMs) of its products. Figure 1.2
shows the hierarchical representation of a BOM for three products (as explained above, we do not
assume any particular storage format like XML, JSON, etc.). The components of each product
are organized under a node with label item. Components can have attributes to record additional
information, e.g., the weight and capacity of a battery. Attributes are represented by special
nodes that are prefixed with an @ and that have an additional value. For example, the weight of
the rightmost battery is 250714 grams and its capacity is 80000 Wh.

bom

item

canoe

@weight
69200

carabiner

@weight
241

item

car

brake

@weight
3266

bumper

@weight
2700

battery

@weight
250800

battery

@weight
250800

item

car

belt

@weight
2890

battery

@weight
250714

@capacity
80000

Figure 1.2: Example of a bill-of-materials (BOM).

Engineers working on the products in Figure 1.2 routinely use CAS queries to find relevant
components in the BOM. Consider the following example.

Example 1.1. The engineers are looking for ways to cut the weight of cars. Thus, they are

looking for all heavy car parts that weigh at least 50 kilograms in Figure 1.2. They issue the

following CAS query using a syntax similar to XQuery, where “//” is the descendant axis that

matches a node and all its descendants in a hierarchical structure:

Q: for $c in /bom/item/car//

where $c/@weight >= 50000

return $c

This query consists of a path predicate expressed as the query path /bom/item/car// and the
value predicate expressed as the range @weight >= 50000. The path predicate matches all
car parts and there are six of them in Figure 1.2. Likewise, the value predicate matches all parts
heavier than 50000 grams and there are four of them. The CAS query is the conjunction of both

1.1 Running Example 9

predicates and returns only three data items (the three framed nodes). Evaluating these predicates
individually or one after the other leads to large intermediate results, which is expensive.

In our running example fast access is needed to the location of components in the hierarchical
assembly of a product and their value for the @weight attribute. Therefore, we want to build a
CAS index on the paths of components and their value for the @weight attribute. We represent
the data items that need to be indexed as two-dimensional keys, called composite keys, that
account for the content and structure of a data item, see Table 1.1 for an example. A composite
key k consists of a value dimension V that represents the content of a data item and a path
dimension P that represents its location in the hierarchical structure of the data. The path of a
key k, denoted by k.P, is given by the labels of all nodes from the root of the hierarchical structure
to the node that this key represents; the labels are separated by a / and the path is terminated by
the end-of-string character $. Similarly, the value of a key k, denoted by k.V , stores the content
(e.g., an attribute value) of the node that k represents. Additionally, each key k stores a reference
k.R that points to the indexed data item. How exactly the reference is implemented depends on
the system; it can be, e.g., the physical address of the data item in memory or on disk, or a unique
ID generated with a node labeling scheme like OrdPath [OOP+04] (explained below). We denote
a set of composite keys by K. We use a sans-serif font to refer to concrete values in our examples.
Further, we use notation K2,5,6,7 to refer to {k2,k5,k6,k7}.

Table 1.1: A set K1..7 = {k1, . . . ,k7} of composite keys.

Path Dimension P Value Dimension V R
k1 /bom/item/canoe$ 69200 (00010E50) r1
k2 /bom/item/carabiner$ 241 (000000F1) r2
k3 /bom/item/car/battery$ 250714 (0003D35A) r3
k4 /bom/item/car/battery$ 250800 (0003D3B0) r4
k5 /bom/item/car/belt$ 2890 (00000B4A) r5
k6 /bom/item/car/brake$ 3266 (00000CC2) r6
k7 /bom/item/car/bumper$ 2700 (00000A8C) r7

1 3 5 7 9 11 13 15 17 19 21 23 1 2 3 4

Example 1.2. Table 1.1 shows a set K1..7 of seven composite keys taken from the BOM in Figure

1.2. The path dimension denotes the path from the root to the data item and the value dimension

denotes its value for the attribute @weight. Composite key k1 denotes that the canoe has

a weight of 69200 grams. k1’s path k1.P = /bom/item/canoe$ contains all node labels

starting from the root node, delimited by the path separator /, and ending with the end-of-string

10 Chapter 1. Introduction

character $. The reference r1 points to the data item that has this path and value. The CAS query

in our running example matches keys {k3,k4} in Table 1.1.

1.2 Related Work

1.2.1 CAS Indexing

In the following we outline the state-of-the-art in CAS indexing and show that existing CAS
indexes are not robust and/or do not scale. Figure 1.3 shows a conceptual overview how the
paths and values are indexed in existing CAS indexes. Blue denotes the paths and red the values.

P V
V

P

P

V

(a) Separate Indexes (b) Path-Value (c) Value-Path (d) Interleaving

Figure 1.3: Conceptual overview of different approaches to index paths and values.

The CAS index by Mathis et al. [MHSB15] consists of two separate index structures: a value
index and a path index (see Figure 1.3a). The value index is a regular B-tree and the path index is
a structural summary (e.g., a DataGuide [GW97]) that summarizes all paths in the data. The path
index assigns to each distinct path a unique identifier, termed path-class reference (PCR). The
value index, i.e., the B-tree, stores tuples of the form (value,〈nodeId,PCR〉) in its leaves.
The first element, value, is the value of the indexed attribute for a key. The next element,
nodeId, uniquely identifies the node that has the given value. The node identifier is based
on a node-labeling scheme (e.g., OrdPath [OOP+04]) that encodes the position of the node in
the hierarchical structure of the data. The last element, PCR, uniquely identifies the path in the
structural summary. In our running example we assume a CAS index is built on the @weight
attribute. Then, the tuple (69200,〈1.1.1,20〉) denotes that the node with ID 1.1.1, referring
to the first child of the first child of the root node in Figure 1.2, has the PCR 20, e.g., referring to
the path /bom/item/canoe, and its value for attribute @weight is 69200. In other words,
this tuple refers to the composite key k1 in Table 1.1. Answering a CAS query requires looking
at the path and the value index. Two evaluation strategies are possible. First, the path and value

1.2 Related Work 11

predicates of the CAS query can be evaluated independently on the respective index structures
and the intermediate results are joined on the PCR. This is expensive if the intermediate results
are large (i.e., at least one predicate has a high selectivity) but the final result is small (i.e.,
the CAS query has a low selectivity). Second, the value predicate is evaluated and for each
query match its PCR is looked up in the path index to see if it satisfies the path predicate. The
problem with this strategy is that if the value predicate has a high selectivity, a large number
of point lookups must be made in the path index, which is expensive. Additionally, if the final
result is small, a large intermediate result must be narrowed down to a small final result. With
either strategy, this CAS index is not robust since its performance is dominated by the size of
its intermediate results. In terms of scalability, Mathis et al. [MHSB15] design their CAS index
as a scalable disk-based index. Both index structures, the DataGuide and the B-tree, can be
efficiently bulk-loaded and updated. Bulk-loading B-trees is sort-based and discussed in more
detail in Section 1.2.3.

IndexFabric [CSF+01] is a CAS index that concatenates the paths and values of composite keys
and stores them in a trie data-structure. Unlike comparison-based trees (e.g., binary search trees,
B-trees etc.), a trie does not store keys in its leave nodes. Instead, in their simplest form, tries
work like a thumb index: we look at the first letter in the search term and jump to all keys that
begin with that letter, then we repeat this process one letter at a time until we looked at all letters
in a key. Each node in a trie stores a letter and when we concatenate all the letters on a root-to-
leaf path we get a key that is stored in the trie. Since IndexFabric concatenates composite keys
and stores them in a trie, the index has two separate layers: the upper layer contains the paths and
the lower layer contains the values. Figure 1.3b visualizes this approach. As a result, IndexFabric
prioritizes the structure of the data over its values since the paths are ordered before the values.
To answer a CAS query, IndexFabric must first fully evaluate the query’s path predicate before
it can evaluate its value predicate. This leads to large intermediate results if the path predicate
has a high selectivity and consequently, IndexFabric is not robust. IndexFabric is based on a
disk-optimized trie that supports updates (tough the details are lost in a technical report that is no
longer accessible online). Bulk-loading is not discussed.

The hierarchical database system Apache Jackrabbit Oak [Apa20] implements the property in-
dex. This index sorts the values and for each value it stores a structural summary (e.g., a
DataGuide [GW97]) of all paths in the database that have this particular value. This again
separates values and paths, as shown in Figure 1.3c. The problem remains the same: when
the selectivity of the dimension that is ordered first (in this case the value dimension) is high,

12 Chapter 1. Introduction

there can be large intermediate results that need to be narrowed down. As a result, also the
property index is not robust. Jackrabbit Oak is a distributed database system with a focus on
scalability. Its property index can be bulk-loaded and updated. Oak implements a node storage
interface that allows for different storage backends to be used. To scale Oak to large datasets,
MongoDB [Mon20] is the recommended storage backend.

More approaches for CAS indexing exist (e.g., [STR+15, KKNR04, LAAE06], etc.), but they
share similar problems as the ones outlined above. Besides CAS indexes, a number of pure con-
tent and pure structure indexes exist, but they are not designed to answer CAS queries efficiently.

The problem with existing CAS indexes is that they do not integrate the paths and values of
composite keys. Instead, they keep them in separate index structures or, if they keep them to-
gether in one index, they prioritize one dimension over the other. To achieve robust CAS query
performance a solution is needed to integrate the content and structure in a well-balanced way.

1.2.2 Linearizing Multi-Dimensional Keys

At its core, CAS indexing is a special case of indexing multi-dimensional data with the dif-
ference that CAS indexing focuses on two dimensions and that one of these two dimensions,
the paths, have a different semantics from the basic data types (numbers, strings, etc.) that are
typically indexed in multi-dimensional indexes. As seen before, existing CAS indexes lack a
well-balanced integration of paths and values. There exist a number of schemes that integrate
the dimensions of multi-dimensional keys and map them to one-dimensional keys. A common
approach is to linearize composite keys using space-filling curves, like the c-order curve [NY17],
the z-order curve [Mor66,OM84], or the Hilbert curve [Hil91]. Space-filling curves map a multi-
dimensional space onto a one-dimensional space and try to keep keys that are close to each other
in multi-dimensional space also close to one another in the one-dimensional space.

The c-order curve [NY17] is the simplest space-filling curve and is obtained by concatenating
the individual dimensions of a composite key according to a given ordering of the dimensions.
In our case, there are two orderings: path followed by value, or vice versa. Table 1.2 shows
various ways to integrate the dimensions of key k6 from Table 1.1. Here, the values are stored
as 32-bit unsigned integers and represented in hexadecimal. Value bytes are written in italic and
shown in red, path bytes are shown in blue. The first two rows show the two possible c-order
curves. The IndexFabric [CSF+01] and the property index in Apache Jackrabbit Oak [Apa20], in

1.2 Related Work 13

essence, implement these two schemes as seen above. The c-order does not lead to robust query
performance because the query predicates must be evaluated one after another according to the
same ordering of the dimensions. If the predicate on the first dimension has a high selectivity, the
keys cannot be pruned effectively and many keys must be considered for the second dimension.

Table 1.2: Key k6 is interleaved using different approaches

Approach Interleaving of Key k6
Path-Value Concatenation /bom/item/car/brake$00000CC2
Value-Path Concatenation 00000CC2/bom/item/car/brake$
Byte-Wise Interleaving 00/00b0CoC2m/item/car/brake$

The z-order curve [Mor66, OM84] is obtained by the bit-wise interleaving of the individual di-
mensions. Figure 1.3d shows how conceptually paths and values are interleaved. Due to its
interleaving, the z-order leads in theory to a more robust query performance since the query
predicates are no longer evaluated one after another but can be evaluated simultaneously. The
z-order curve is a static interleaving scheme since the interleaving follows a pre-defined pattern
(i.e., the first bit of every dimension is interleaved, then the second, etc.). The problem with the
z-order curve is twofold. First, since the z-order is static, it is oblivious to the data distribution
and can interleave the dimensions at common prefixes. The problem with common prefixes is
that they do not partition the data and therefore interleaving at a common prefix does not make
progress. Common prefixes do not help to prune the search space during a search since common
prefixes are the same for all data items. This means that during a search either a query matches
the common prefix, in which case we must look at all keys, or the query does not match the com-
mon prefix, in which case we must discard all keys. Discarding keys selectively is not possible
at a common prefix. Interleaving a common prefix in one dimension with a non-common prefix
in the other dimension means we can prune keys in one dimension but not the other (i.e., there
is progress in one dimension, but not the other). As a result, the z-order curve can prioritize one
dimension over another. The second problem is that it is unclear how to encode variable-length
composite keys when the z-order is applied in CAS indexing. Typically, z-order is applied when
all the dimensions of a key have the same basic data type (e.g., every dimension is stored as a
32 bit number). In our case, paths are variable-length strings that encode a variable number of
node labels, while the values are basic data types like integers, floating point numbers, or simple
strings. The last row in Table 1.2 shows one possible way to interleave the paths and values:
namely byte-wise. This scheme makes the first problem even worse since now all bytes of the
value are interleaved with a common path prefix. In practice this means the byte-wise inter-
leaving behaves exactly like the value-path concatenation, which does not lead to robust query

14 Chapter 1. Introduction

performance. To better handle variable-length keys, Markl [Mar99] suggests surrogate func-
tions that map variable-length keys to fixed-length keys. The problem here is to find a surrogate
function that (i) preserves the sort order in the value dimension, (ii) maintains the hierarchical re-
lationships between nodes in the path dimension, and (iii) can be updated when the data changes.
We need points (i) and (ii) to evaluate the value and path predicates of CAS queries efficiently,
and point (iii) – efficient updates – is required for scalability.

Nishimura et al. [NY17] propose an approach, called QUILTS, to design space-filling curves
based on the query workload. QUILTS devises static interleaving schemes that prioritize the
dimensions that lead to the fastest query execution for the given query workload. It achieves this
by changing the order in which the bits of the different dimensions are interleaved. With the
c-order and z-order curves as the two extreme ends of a possible range of interleaving schemes
(no interleaving vs. interleaving every bit), QUILTS exploits knowing the query workload and
rearranges the interleaving order to, e.g., interleave two bits of the first dimension, followed
by three bits of the other dimension, etc. Applying QUILTS to CAS indexing is difficult for
several reasons. First, like the z-order, also QUILTS assumes that the keys have a fixed length
and, as shown above, current approaches to interleave variable-length keys are flawed. Second,
QUILTS requires information about the query workload, which is often not known in advance.
In this thesis we assume no knowledge of the query workload, instead we want to support a
wide range of queries in a robust way, including ad-hoc queries that are used in exploratory data
analysis. Another problem is that Nishimura et al. do not discuss what happens if the query
workload changes. Presumably, either the query performance deteriorates if the interleaving is
not updated, or, if the static interleaving scheme is updated according to the changing query
workload, all keys must be interleaved anew. This is expensive and limits the scalability of this
approach.

Interleaving keys is only the first step; we must also store keys in suitable index structures to
query them efficiently. The benefit of interleaving schemes is that traditional one-dimensional
index structures can be re-used to store and query multi-dimensional data. For example, the UB-
tree [RMF+00] is a B-tree that stores z-encoded keys and likewise the kd-trie [OM84] is a trie
that stores z-encoded keys.

The problem with existing interleaving schemes is that they are static and ignore the data dis-
tribution. As a result, they are oblivious to common prefixes in the data and interleaving keys
at common prefixes does not lead to robust query performance. In addition, they struggle with

1.2 Related Work 15

variable-length keys because it is unclear how to best interleave them. In summary, static inter-
leavings do not offer a well-balanced integration of paths and values of composite keys.

1.2.3 Building and Updating Indexes

One requirement that we defined for a scalable CAS index is that it it must be possible (i) to effi-
ciently build the index from scratch for large datasets, and (ii) to update the index when the data
changes. In the following we look at the standard techniques to create a new index using bulk-
loading and how to insert/delete data efficiently. Three common approaches for bulk-loading
exist: sort-based, sampling-based, and buffer-based approaches. We look at these approaches in
turns.

Sort-based bulk-loading is the standard approach to build B-trees and is widely implemented in
database systems (e.g., PostgreSQL, etc.). Unless the data fits into memory, the data is first sorted
externally, e.g., using external sort merge, and then the index is built bottom-up, level by level
[KPT91]. Sort-based bulk-loading is more difficult for multi-dimensional data since the sort-
order is unclear. One solution to fix the sort-order is to linearize multi-dimensional keys using
space-filling curves (see above). This approach works if keys can be efficiently linearized, which
is the case for static interleaving schemes like the z-order curve that interleaves a key in constant
time. If, on the other hand, computing the interleaving of a key requires more than constant
time, this can become a bottleneck that dominates the runtime of sort-based bulk-loading. In this
thesis we propose a dynamic, data-driven interleaving scheme that interleaves a set of keys as a
whole and not each key in the set individually. In this dynamic interleaving scheme the cost of
interleaving a key is not constant since we cannot interleave one key without looking at all other
keys. This makes sort-based bulk-loading with our this dynamic interleaving scheme impractical
for large datasets.

Sampling-based bulk-loading [AS10, dBS01, GSM+04] draws a sample of the dataset to build
a skeleton of the target index in memory and later extend that index to disk. For example, van
den Bercken et al. [dBS01] build an index in memory top-down from a sample of the data,
attach disk-based buffers to each leaf node, insert the remaining keys into the leaf buffers, and
recursively call the algorithm on each leaf buffer. Combining sampling-based bulk-loading with
interleaving-based indexing works only if the interleaving can be computed from a sample of
the data. Since our dynamic interleaving scheme interleaves all keys at the same time, it is not

16 Chapter 1. Introduction

possible to derive the dynamic interleaving from a sample of the data. Doing so would lead to an
incorrect index that can return wrong query results.

A third class of algorithms is based on the buffer-tree technique [Arg03, AHVV02], where each
node in a tree has a buffer that accumulates updates for the subtree. Only when the buffer is
full, the updates in the buffer are propagated one level down. Batching the updates allows for
efficient bulk-loading and index updates. Much like in the previous case, looking at small batches
is insufficient since we need to look at all the data to dynamically interleave it.

In terms of efficiently updating indexes there exist a large number of approaches. Each index
structure comes with its own set of update routines that are tailored to the characteristics of
the data structure. For example, B-trees use splitting and merging to implement insertion and
deletion, respectively, and to ensure that the tree remains balanced, while red-black trees use
rebalancing to maintain the integrity of the tree after updates. Updating a trie data-structure is
simpler since it is not a balanced tree. To insert a key, the trie is traversed starting from the root
node and the letters in the key are compared to the letters in the nodes. The traversal stops when
the next node to traverse to cannot be found and at that position the remaining suffix of the key
is inserted. Modern trie implementations [AZ09, HZW02, LKN13, Mor68] have more complex
update routines, but the basic principle is the same.

Existing bulk-loading strategies are efficient and have proven their value in commercial and
open-source database systems, but the problem is that combining these strategies with a dynamic
interleaving scheme is difficult. Either the performance is subpar or, in the case of bulk-loading
the index through small samples or in batches, the index can return incorrect query results.

1.3 Challenges

In this thesis we address four challenges: (i) a well-balanced interleaving of the paths and values
of composite keys in semi-structured, hierarchical data, (ii) building a robust CAS index based
on interleaving the paths and values, (iii) supporting updates to this index when new data arrives,
and (iv) scaling this index to big datasets.

Challenge 1: Well-Balanced Interleaving of Paths and Values. The first challenge that we
address in this thesis is to find a way to interleave the paths and values of composite keys without
prioritizing either dimension. Existing static interleaving schemes struggle with variable-length

1.3 Challenges 17

keys and are vulnerable to long common prefixes in the data because they are static and ignore
the data distribution. A well-balanced integration must handle long common prefixes effectively
since especially the paths in a hierarchical structure have, by their very nature, long common
prefixes. We develop a novel interleaving scheme, the dynamic interleaving, that offers a well-
balanced integration of paths and values.

Challenge 2: Robust CAS Indexing. The dynamic interleaving defines how the paths and
values are interleaved, but without suitable index structure the interleaved keys cannot be queried
efficiently. Therefore, the second challenge that we address in this thesis is to build a robust CAS
index that utilizes the dynamic interleaving. Finding the right data structure for our CAS index is
not straightforward because the data structure must support two different access methods. On the
one hand, we have path predicates that can contain besides simple parent-child relationships also
more complex ancestor-descendant relationships and wildcards. On the other hand, the index
structure must support value predicates that are expressed as a range [a,b], which enables point
lookups (if a = b) and range searches (if a < b). To implement the path and value predicates,
we need a data structure that supports prefix and range searches, respectively. A prefix search
matches paths that have the same prefix as the query path and a range search matches values that
fall within the given range. Given these requirements, a trie, also known as prefix tree or radix
tree, is the natural choice since it efficiently supports both search methods. Therefore, we develop
our Robust CAS (RCAS) index on top of a memory-optimized trie structure (ART [LKN13]).

Challenge 3: Updating CAS Indexes. The third challenge is how to efficiently insert/delete
keys in the RCAS index while preserving RCAS’s robust query performance. Updating the
RCAS index is difficult due to its dynamic interleaving scheme. Since the dynamic interleaving
is data-driven and the interleaving of one key depends on all other keys, inserting or deleting
just one key into the index can change the dynamic interleaving of a large number of keys. This
means in the worst case we need to restructure a significant part of the RCAS index to preserve
the dynamic interleaving of the keys, which is expensive. Here we look for techniques to update
RCAS efficiently and maintain its robust query performance.

Challenge 4: Scalable CAS Indexing. The fourth challenge is scaling the RCAS index to
large datasets. Since RCAS is a main-memory index and based on a memory-optimized trie
(ART [LKN13]), RCAS does not scale to large datasets. Scaling our dynamic interleaving and
RCAS index to large datasets is not trivial. First, extending RCAS to block storage devices
is not straightforward since its nodes are small and not aligned with a page-structured storage
layout. Second, the RCAS bulk-loading algorithm is limited by main-memory data structures

18 Chapter 1. Introduction

and algorithms that do not scale. For example, dynamically interleaving a set of composite keys
that does not fit into memory is difficult because the dynamic interleaving is data-driven and to
dynamically interleave a single key we need to consider all other keys. In addition, during bulk-
loading we need to be careful how to manage the available memory if the data size exceeds the
memory size.

19

CHAPTER 2

Contributions

This thesis makes the following contributions:

1. (Dynamic Interleaving) We introduce a novel interleaving scheme, the dynamic interleav-
ing, that is rooted in a well-balanced interleaving of the paths and values of composite keys
without prioritizing either dimension.

2. (Robust Content-and-Structure (RCAS) Index) We propose a new in-memory, trie-based
CAS index, called the Robust CAS (RCAS) index, that stores dynamically-interleaved com-
posite keys.

3. (Supporting Insertions in RCAS) We develop several techniques to incrementally insert
new keys in the RCAS index that trade insertion and query performance.

4. (Scalable RCAS+ Index) We propose the RCAS+ index, a scalable version of the in-
memory RCAS index that maintains RCAS’s excellent CAS query performance and that
scales to large datasets that do not fit into memory.

In this thesis we address the challenges from Section 1.3 by starting with an application scenario
that illustrates the problem. Our solutions to each problem and their properties are studied and

20 Chapter 2. Contributions

elaborated analytically. We implement and experimentally evaluate our solutions to confirm our
analytical results and we compare them to state-of-the-art competitors on different datasets. We
provide the source code, datasets, and instructions how to reproduce our results online (see the
experimental evaluation section of each paper).

The remainder of this chapter elaborates each contribution in detail.

2.1 Dynamic Interleaving

Our first contribution is a novel interleaving scheme, called dynamic interleaving, that offers
a well-balanced integration of the paths and values of composite keys. Dynamic interleaving
is rooted in the observation that paths and values often have long common prefixes and that
statically interleaving at a common prefix leads to an ill-balanced interleaving that prioritizes
one dimension over another. While discarding keys selectively during a search is not possible
at a common prefix, the first byte following a longest common prefix allows exactly this: it
distinguishes different data items and allows us to narrow down the set of keys that match a
query. We call such a byte a discriminative byte. We define the discriminative byte dsc(K,D) of
a set K of composite keys in dimension D ∈ {P,V} as the first byte for which the keys differ in
dimension D.

Example 2.1. The discriminative path byte of the keys K1..7 in Table 1.1 is dsc(K1..7,P) = 13.

All seven keys share the same longest common path prefix /bom/item/ca of length 12 and

the first byte after the longest common path prefix is the discriminative path byte, since key

k1.P[13] = n while k.P[13] = r for all keys k ∈ {k2, . . . ,k7}. Likewise, the discriminative value

byte is dsc(K1..7,V) = 2.

Intuitively, dynamically interleaving a set of keys means to always interleave the shortest prefix
that can distinguish data items in one dimension (e.g., the value dimension) with the correspond-
ing shortest prefix in the other dimension (e.g., the path dimension). The shortest prefix that can
distinguish data items in the respective dimension is the sequence of bytes from the first byte
up to the discriminative byte. Consequently, the dynamic interleaving interleaves the paths and
values of composite keys at their discriminative path and value bytes. Interleaving at the dis-
criminative bytes means that at each interleaving step we make progress in both dimensions at
the same time.

2.1 Dynamic Interleaving 21

To dynamically interleave a set of keys, we propose a partitioning-based approach that alternat-
ingly partitions the data in the path and value dimensions. We introduce the partitioning operator
ψ(K,D) that partitions a set K of composite keys based on their value at the discriminative byte
in dimension D. That is, ψ groups all keys in K that have the same value at the discriminative
byte dsc(K,D). Formally, ψ returns a set of partitions ψ(K,D) = {K1, . . . ,Km} such that (i) all
keys in Ki have the same value at dsc(K,D), (ii) no two keys from different partitions Ki 6= K j

have the same value at dsc(K,D), and (iii) all keys in K are assigned to some partition Ki and no
partition is empty.

Example 2.2. We ψ-partition the keys K1..7 based on their value at their discriminative

value byte, which is the second byte. Consequently, the ψ-partitioning is ψ(K1..7,V) =

{K2,5,6,7,K1,K3,4}. All keys in K2,5,6,7 have value 00 at the discriminative value byte. The

only key in K1 has value 01 at the second value byte, and the two keys in K3,4 have value 03.

To compute the dynamic interleaving we start with the set of all keys and ψ-partition it in the
value dimension (chosen arbitrarily). Each resulting partition is itself ψ-partitioned in the alter-
nate dimension, i.e., the path dimension. We continue to alternatingly ψ-partition the data until
a partition contains only a single key and can therefore not be partitioned further. Each time we
ψ-partition the data, we record three pieces of information: (i) the longest common path prefix
of the current set of keys, (ii) the longest common value prefix of the current set of keys, and (iii)
the dimension in which the current set of keys is ψ-partitioned (we set the dimension to ⊥ if the
set cannot be further ψ-partitioned since it contains only one key).

Table 2.1: The dynamic interleaving of the composite keys in K1..7. The values at the discrimi-
native bytes are written in bold.

Key k Dynamic Interleaving of key k
k2 ((00,/bom/item/ca,V), (00,r,P), (abiner$,00F1,⊥))
k7 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0A8C,umper$,⊥))
k5 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0B4A,elt$,⊥))
k6 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0CC2,rake$,⊥))
k1 ((00,/bom/item/ca,V), (010E50,noe$,⊥))
k3 ((00,/bom/item/ca,V), (03D3,r/battery$,V), (5A,ε,⊥))
k4 ((00,/bom/item/ca,V), (03D3,r/battery$,V), (B0,ε,⊥))

Example 2.3. We start with the set K1..7 and store its longest common value prefix 00, longest

common path prefix /bom/item/ca, and dimension V that is used to ψ-partition the data in

a tuple (00,/bom/item/ca,V). After that, we repeat the same process for each partition in

22 Chapter 2. Contributions

ψ(K1..7,V) = {K2,5,6,7,K1,K3,4} in the alternate dimension: the path dimension P. We illustrate

this process for partition K2,5,6,7. First, we we interleave K2,5,6,7’s longest common path and

value prefixes but remove its parent partition’s, i.e., K1..7’s, longest common prefixes since they

were already interleaved in the previous step. Thus, we interleave strings 00 in the value dimen-

sion and r in the path dimension. Next, we ψ-partition K2,5,6,7 in dimension P. This process

continues until all partitions are narrowed down to a single key. Table 2.1 shows the dynamic

interleaving of all keys in K1..7.

Compared to the static interleavings in Table 1.2, the dynamic interleavings in Table 2.1 are
well-balanced and interleave paths and values in a natural way.

2.2 Robust Content-and-Structure (RCAS) Index

Our second contribution is a new CAS index, called the Robust CAS (RCAS) index, that utilizes
the dynamic interleaving to achieve robust CAS query performance. We embed dynamically-
interleaved keys in a trie structure since tries support the range and prefix searches efficiently
that we need to implement the value and path predicates of CAS queries, respectively. Crucially,
tries in combination with dynamically-interleaved keys allow us to simultaneously evaluate path
and value predicates of CAS queries in a robust way.

Embedding dynamically-interleaved keys in a trie is a natural fit since the dynamic interleaving
organizes keys according to their longest common prefixes, exactly like tries do. Figure 2.1
shows how the dynamically-interleaved keys in Table 2.1 are stored in the RCAS index. Each
longest common prefix in the dynamic interleaving is stored as a single node in the RCAS index.
Storing common prefixes only once reduces the storage overhead of the index. Each node stores
a value and a path substring, and a dimension D that specifies in which dimension the data is
partitioned (for leaf nodes the dimension is ⊥). The value and path substrings in a node are the
longest common prefixes of all descendants of the node. Leaf nodes store a set of references that
point to the location of the data item in the database. On a technical level, RCAS is an in-memory
index that is built on top of a memory-optimized trie (ART [LKN13]).

To efficiently answer a CAS query with the RCAS index we traverse the index depth first. At
each node that we visit during the search, we evaluate a part of the path and value predicates,
which allows us to prune subtrees early if at least one of the predicates has a low selectively.
Starting from the root, the query’s path and value predicates are matched against the root node’s

2.2 Robust Content-and-Structure (RCAS) Index 23

Key k Dynamic Interleaving of key k

k2 ((00,/bom/item/ca,V), (00,r,P), (abiner$,00F1,⊥))
k7 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0A8C,umper$,⊥))
k5 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0B4A,elt$,⊥))
k6 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0CC2,rake$,⊥))
k1 ((00,/bom/item/ca,V), (010E50,noe$,⊥))
k3 ((00,/bom/item/ca,V), (03D3,r/battery$,V), (5A,ε,⊥))
k4 ((00,/bom/item/ca,V), (03D3,r/battery$,V), (B0,ε,⊥))

n1
(00,/bom/item/ca,V)

n2
(00,r,P)

n3
(abiner$,00F1,⊥)

{r2}

n4
(/b,ε,V)

n5
(0A8C,umper$,⊥)

{r7}

n6
(0B4A,elt$,⊥)

{r5}

n7
(0CC2,rake$,⊥)

{r6}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

Collapse common prefixes into nodes

Figure 2.1: The dynamic interleaving is embedded in the trie-based RCAS index.

path and value substrings. As long as these substrings match, we descend to the appropriate
children. In case the current node partitions the data in the value dimension we look at the next
byte in the value predicate’s lower and upper bound to decide what children we look at next (if
any). Likewise, if the node partitions the data in the path dimension, we look at the next byte in
the query path to find the appropriate child, or we descend to all children in case the next byte in
the query path is the descendant axis or a wildcard.

Example 2.4. We consider a CAS query with query path q = /bom/item//battery$ and a

value range [vl,vh] from vl = 105 = 000186A0 to vh = 5 ·105 = 0007A120. We show how

this query is executed on the RCAS index depicted in Figure 2.1.

24 Chapter 2. Contributions

• We start at the root node n1 and see that its value substring 00 matches the first bytes of the

lower and upper bound in the value predicate. The path predicate matches the path substring

/bom/item/ca, since they coincide on the prefix /bom/item and the descendant axis

// in the query path matches the substring /ca. We descend to the appropriate children.

Since n1 is a value node (n1.D = V), we look for all matching children whose value at the

discriminative value byte is between 01 and 07 (these are the values at the second byte in the

lower and upper bound on the range, respectively). Nodes n8 and n9 satisfy this condition.

• Node n8 is a leaf. Neither its path nor value substrings satisfy the path and value predicates.

Consequently, the search discards node n8 (and its descendants – if there were any).

• Next we look at node n9. Since the node’s first value byte, 03, is strictly larger (smaller)

than the corresponding byte 01 (07) in the lower bound (upper bound), this node and all its

descendants match the value predicate. n9’s path substring matches the path predicate up to

the very end. Consequently, we know that all keys contained in this subtree satisfy the CAS

query and therefore we return all references in the subtree, i.e., references {r3, r′3, r4}.

RCAS’s robustness is rooted in its dynamic interleaving that alternatingly interleaves paths and
values at their discriminative bytes. We show that RCAS has the lowest average query runtime
among all interleaving-based tries.

To prove RCAS’s robustness we propose a cost model and show that the cost over all queries
is minimal when we use dynamically-interleaved keys. For simplicity, the cost model assumes
that the index has a fixed height h and fanout o (making the index balanced). In addition, we
assume that all the nodes on a level i of the index partition the node in dimension Di ∈ {P,V}.
Then the interleaving order can be described by a vector φ = (D1,D2, . . . ,Dh). Our RCAS index
alternatingly partitions the data in dimension V and P, thus φDY = (V,P,V,P, . . .). The c-order
curve separates values and paths, e.g., φ = (V,V, . . . ,P,P). A query starts at the root and traverses
the data structure to determine the answer set. In the case of range queries, more than one branch
must be followed. A search follows a fraction of the outgoing branches o originating at this node.
We call this the selectivity of a node (or just selectivity). We assume that every path node has a
selectivity of ςP and every value node has the selectivity of ςV , where 0 ≤ ςP,ςV ≤ 1. The cost
of a CAS query is measured in the number of visited nodes during the search.

State-of-the-art CAS-indexes are not robust because they favor either path or value predicates.
As a result they show a very good performance for one type of query but run into problems for
different queries. We define complementary queries as two queries Q and Q′ that have opposing

2.3 Updating the RCAS Index 25

selectivities. That is, if Q has selectivities ςP and ςV , its complementary query Q′ has selec-
tivities ς ′P = ςV and ς ′V = ςP. RCAS has the lowest cost for complementary queries among all
interleaving-based approaches.

Theorem 2.1. There is no interleaving φ that in total has a smaller cost than the dynamic inter-

leaving φDY for complementary queries.

Having the provably best average runtime for complementary queries means that the RCAS index
is less sensitive to the individual selectivities of the path and value predicates than other indexes.
Since for every query there exists also a complementary query, we can generalize the above result
and show that it holds for all possible queries.

Theorem 2.2. There is no interleaving φ that in total has a smaller cost than the dynamic inter-

leaving φDY over all possible queries.

2.3 Updating the RCAS Index

Our third contribution are methods to update the RCAS index that explore the trade-off between
update performance and query performance. Updating the RCAS index is difficult because in-
serting or deleting a single key can affect the dynamic interleaving of other keys. Indeed, in the
worst case, inserting or deleting a single key can change the dynamic interleaving of all other
keys and, as a consequence, a single update can affect large parts of the RCAS index.

We show that not every insertion or deletion is expensive: three cases can occur during an index
update and only one of them is expensive. In the remainder we focus on insertion; deletion is
analogous. In the first insertion case, a duplicate key is inserted and in this case we only need
to add another reference to the corresponding leaf node in RCAS. The second case occurs when
the key to be inserted deviates from the keys in the index, but it does so at the very end of the trie
structure. In this case, we need to add a new leaf node to RCAS. The first and second case are
inexpensive since the main cost is traversing the index. The third case is the most difficult one and
occurs when the key to be inserted differs from a node in the path and/or value dimension. This
means, the new key shifts the position of a discriminative byte and this invalidates the dynamic
interleaving of all keys that are located in the subtree rooted in the node where the mismatch
occurred.

26 Chapter 2. Contributions

Example 2.5. We insert the key (/bom/item/cassette$,0000AB12) with reference r10

into the RCAS index in Figure 2.1. The insertion proceeds from the root node to node n2 and

finds that there is a mismatch since the first s in the key’s path differs from the r in n2’s path

substring. This invalidates the dynamic interleaving of all keys rooted in n2’s subtree.

To handle the third insertion case we must restructure the RCAS index and we propose two
techniques to do just that, called strict restructuring and lazy restructuring. Strict restructuring
optimizes for query performance at the expense of insertion performance, while lazy restructur-
ing trades query performance for better insertion performance.

Strict restructuring preserves the dynamic interleaving by (i) collecting all keys whose dynamic
interleaving gets invalidated by inserting the new key, (ii) recomputing their dynamic interleav-
ing, and (iii) replacing the subtree rooted in the node where the mismatch occurred with a newly
created subtree that reflects the new dynamic interleaving. The cost of this approach depends on
the size of the subtree that must be recreated. In the worst case, if there is a mismatch in the root
node, this effectively means rebuilding the entire RCAS index.

Example 2.6. We continue the previous example. Since there is a mismatch in node n2, strict

restructuring rebuilds the entire subtree rooted in n2. Figure 2.2a shows the RCAS index after

inserting the key using strict restructuring.

Lazy restructuring opts for a more efficient insertion method that only adds exactly two new
nodes to the RCAS index. The basic idea is to add a new intermediate node that is able to suc-
cessfully distinguish its children: the node where the mismatch happened and a new sibling that
represents the newly inserted key. While efficient, lazy restructuring does not preserve the dy-
namic interleaving of paths and values at their discriminative bytes. Inserting a key with lazy
restructuring introduces small irregularities that are limited to the dynamic interleaving of the
keys in the subtree where the mismatch occurred. These irregularities slowly separate (rather
than interleave) paths and values if insertions repeatedly force the algorithm to split the same
subtree in the same dimension. On the other hand, lazy restructuring can also repair itself when
an insertion forces the algorithm to split in the opposite dimension. In our experimental evalua-
tion, lazy restructuring proves to be fast and to lead to good query performance.

Example 2.7. We insert the same key as in the previous example using lazy restructuring, see

Figure 2.2b. Since the mismatch occurred in n2, we add a new node n13 above n2 and a new

sibling node n14. The new parent node n13 contains all bytes that are shared between the inserted

2.3 Updating the RCAS Index 27

n1
(00,/bom/item/ca,V)

n2
(00,ε,P)

n13
(ssette$,AB12,⊥)

{r10}

n4
(r,ε,V)

n3
(00F1,abiner$,⊥)

{r2}

n5
(0A8C,/bumper$,⊥)

{r7}

n6
(0B4A,/belt$,⊥)

{r5}

n7
(0CC2,/brake$,⊥)

{r6, r8}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

(a) Inserting a key with the strict restructuring method.

n1
(00,/bom/item/ca,V)

n13
(00,ε,P)

n2
(r,ε,P)

n3
(abiner$,00F1,⊥)

{r2}

n4
(/b,ε,V)

n5
(0A8C,umper$,⊥)

{r7}

n6
(0B4A,elt$,⊥)

{r5}

n7
(0CC2,rake$,⊥)

{r6, r8}

n14
(ssette$,AB12,⊥)

{r10}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

(b) Inserting a new key with lazy restructuring.

Figure 2.2: Comparison of strict and lazy restructuring.

key and node n2. It partitions the keys in the path dimension since there was only a path mismatch

between the key and n2. Node n13 and its child n2 partition the data both in the path dimension

(n.D = P) and therefore violate the strictly alternating pattern.

In addition to strict and lazy restructuring we propose to use an auxiliary RCAS index to further
improve the update performance. The idea is to apply the inexpensive Case 1 and 2 insertions
directly on the (main) RCAS index and redirect the expensive Case 3 insertions to a smaller
auxiliary RCAS index, where restructuring is cheaper. The auxiliary index is periodically merged
back into the main RCAS index before it grows too big. Queries now have to traverse two index
structures, but their combined size is comparable to the RCAS index if no auxiliary index was
used, and therefore query performance does not degrade noticeably.

28 Chapter 2. Contributions

2.4 Scalable RCAS+ Index

Our fourth contribution is to scale the RCAS index to big datasets. Many applications need
quick access to large amounts of semi-structured hierarchical data, for which scalable indexing
solutions are essential. For example, we collaborate with the Software Heritage (SWH) project,1

which aims to collect and preserve all publicly-available software source code. The SWH archive
has become the world’s largest archive of its kind [ACZ18, DCZ17] and it includes code from
popular forges like GitHub, GitLab, Bitbucket, etc. The SWH archive is big: it archives hun-
dreds of millions of repositories, billions of commits, and tens of billions of source code files.
Currently, the SWH archive implements only rudimentary search features, like keyword searches
in the names and URLs of software repositories, but more advanced queries, like CAS queries,
are not supported. We use RCAS to index the revisions (i.e., commits) in the SWH archive. A re-
vision captures what is commonly referred to as a “commit” in modern version control systems.
A revision references the entire source code tree of a software project at commit time, points to
previous revision(s) – allowing to compute source code “diffs” between commits – and is associ-
ated to metadata such as commit time and author. We index for each revision in the SWH archive
its commit time and its diff, i.e., what files are modified (added/changed/deleted). This allows,
e.g., software researchers to filter and later analyze revisions that modify certain files in a given
time frame. If software researchers want to perform a security audit of open-source software,
they can use the RCAS index to look for revisions that modify cryptographic routines that are
stored in certain directories (e.g., the crypto folder in a repository). In addition, they can limit
the scope of the audit to recent revisions from, e.g., the past six months.

While RCAS is robust, it does not scale to large datasets like the SWH archive because of two
issues. First, RCAS is an in-memory index based on a memory-optimized trie (ART [LKN13]),
and second bulk-loading RCAS is limited by main-memory data structures and algorithms that
do not scale.

To address these issues we propose the scalable RCAS+ index that is not constrained by the
available memory. While RCAS is optimized for main-memory storage, we optimize RCAS+

for disk storage.2 In addition, we develop a scalable algorithm that builds RCAS+ while, at the
same time, dynamically interleaving the keys. Building the index and dynamically interleaving
the keys at the same time amortizes the cost of the interleaving. A salient property of the bulk-

1https://www.softwareheritage.org
2We use the term disk to refer to any generic block-storage device (HDD, SSD, etc.)

https://www.softwareheritage.org

2.4 Scalable RCAS+ Index 29

loading algorithm is that it requires only little memory, but scales nicely with the size of the
available memory.

The algorithm is partitioning-based and proceeds as follows. Initially, all keys belong to one par-

tition that may exceed the size of the available memory. A partition is a tuple (gP,gV ,mptr, fptr)

and stores a set of composite keys along with important meta-information, namely the discrimi-
native path byte gP and the discriminative value byte gV . A key is stored either in memory or on
disk. mptr and fptr are pointers to keys in memory and on disk, respectively. The bulk-loading
algorithm works top-down. The first partition that contains all keys, called the root partition, is
ψ-partitioned, creating a set of partitions. Each partition is recursively processed and in each step
of the recursion we add one node to the RCAS+ index that interleaves the longest common path
and value prefixes of the current partition. The recursion stops when a partition becomes small
enough to fit on a disk page. We propose five techniques that make building RCAS+ at scale
feasible in terms of, respectively, CPU, memory, and disk usage. We outline the five techniques
in the following.

Node Clustering. The nodes in the memory-optimized RCAS index are typically small and
do not fill a disk page. Mapping each node to its own page on disk is wasteful and would
unnecessarily increase query runtime because many pages have to be fetched from disk during
query evaluation. Hence, in RCAS+ we use node clustering to align small nodes on block-based
storage devices by grouping the nodes on pages. We use a greedy node-clustering algorithm
[KM06a] that groups nodes bottom-up (i.e., from the leaves to the root). As soon as the algorithm
clusters a set of nodes, we write the nodes to disk and release them from memory. Because of its
greedy nature, the algorithm has a small memory footprint, which allows us to use the remaining
memory to improve the performance of the bulk-loading algorithm.

Depth-first bulk-loading. Our bulk-loading algorithm is partitioning-based and creates nodes
top-down, but the node-clustering algorithm groups the nodes into pages bottom-up, starting
at the leaf nodes. Depth-first bulk-loading guarantees that only a small number of nodes have
to be kept in memory before they can be written to disk by node clustering. Depth-first bulk-
loading in combination with node clustering guarantees that the bulk-loading algorithm has a
negligible memory footprint of O(h×B), where h is the height of RCAS+ and B is the page size.
Consequently, we can use the remaining memory to speed up bulk-loading with front-loading.

Front-Loading. Depth-first bulk-loading together with node clustering minimizes the mem-
ory footprint and we propose front-loading to optimally use the remaining memory. For large
datasets that exceed the size of the available memory we need to decide what part of the data

30 Chapter 2. Contributions

is kept in memory and what is stored on disk. Our bulk-loading algorithm uses partitions that
keep some keys in memory (mptr) and some on disk (fptr). When we start bulk-loading RCAS+,
we store as many keys as possible in the root partition’s mptr and store the remaining keys in its
fptr. When we break up the root partition into a set of partitions {K1, . . . ,Km} we need to de-
cide how we re-allocate the memory used by the root partition to the new partitions K1, . . . ,Km.
Front-loading re-uses the memory for those partitions that are processed next by the bulk-loading
algorithm. Since we process the partitions K1, . . . ,Km in that order, we keep the first few parti-
tions entirely memory-resident, followed by up to one hybrid partition that is stored partially in
memory and partially on disk, and all remaining partitions are entirely disk-resident. Memory-
resident partitions can be processed entirely in memory. After processing those partitions recur-
sively, their memory is released and can be reused when we process the hybrid partition next
(and the same applies for the following disk-resident partitions). We show that front-loading is
the optimal memory placement strategy during bulk-loading.

Proactive Partitioning. To ψ-partition a partition K we first need to compute its discriminative
bytes gP and gV . Thus, in general we need two scans over K to ψ-partition it: the first scan deter-
mines K’s discriminative byte and the second scan assigns the keys to their partitions. Scanning
every partition twice is expensive, especially when the partitions are disk-resident. Proactive
Partitioning exploits that the data is partitioned hierarchically and pre-computes the discrimina-
tive bytes of new partitions at the next level while partitioning a set of keys. By the time the
new partitions are being partitioned we have already computed the discriminative bytes. Conse-
quently, only the root partition needs to be scanned twice, and every subsequent partition needs
to be scanned only once.

Lazy Interleaving. Unlike static interleaving schemes that are typically cheap to compute (e.g.,
constant time per key for z-order), the dynamic interleaving is more expensive to compute. To
reduce the cost of the dynamic interleaving we propose a lazy version of the dynamic interleav-
ing, called lazy interleaving. The basic idea is to interleave only the prefixes of the keys without
interleaving their suffixes. With lazy interleaving we stop the hierarchical partitioning when a
partition fits on a single disk page and store the remaining suffixes of the keys un-interleaved
on a leaf page. During subsequent searches all suffixes in a leaf page must be checked with a
linear scan if they match a given CAS query. Since RCAS+ is not designed for point queries that
select only a single key in a leaf node, the overhead of scanning all keys in a leaf is acceptable.
We experimentally show that lazy interleaving speeds up bulk-loading by a factor of 20 without
compromising query performance.

31

CHAPTER 3

Thesis Roadmap

This thesis is based on the following collection of papers. The papers are reprinted in the ap-
pendix and a bibliography for all papers is given at the end of the thesis.

Appendix A Dynamic Interleaving of Content and Structure for Robust Indexing of Semi-
Structured Hierarchical Data

Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer. “Dynamic Interleaving of
Content and Structure for Robust Indexing of Semi-Structured Hierarchical Data”,
in PVLDB, 13(10): pages 1641–1653, 2020.
doi:10.14778/3401960.3401963

Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer. “Dynamic Interleaving of
Content and Structure for Robust Indexing of Semi-Structured Hierarchical Data
(Extended Version)”, Technical Report, CoRR, 14 pages, 2020.
https://arxiv.org/abs/2006.05134

Appendix B Inserting Keys into the Robust Content-and-Structure (RCAS) Index

Kevin Wellenzohn, Luka Popovic, Michael H. Böhlen, Sven Helmer. “Inserting

https://dx.doi.org/10.14778/3401960.3401963
https://arxiv.org/abs/2006.05134

32 Chapter 3. Thesis Roadmap

Keys into the Robust Content-and-Structure (RCAS) Index”, in ADBIS, pages
121–135, 2021.
doi:10.1007/978-3-030-82472-3_10

Appendix C Scalable Content-and-Structure Indexing

Kevin Wellenzohn, Michael H. Böhlen, Sven Helmer, Antoine Pietri, Stefano Za-
cchiroli. “Scalable Content-and-Structure Indexing”, [ready for submission]

The first paper, Appendix A, introduces the first two contributions of this thesis: the dynamic
interleaving scheme (see Section 2.1) and the trie-based RCAS index (see Section 2.2).

The second paper, Appendix B, covers the third contribution (see Section 2.3): it describes why
updating the RCAS index with its dynamic interleaving is difficult and proposes several restruc-
turing techniques that trade update and query performance.

The third paper, Appendix C, develops our fourth contribution (see Section 2.4): the paper pro-
poses the scalable RCAS+ index that scales the RCAS index to large datasets. We show-case
RCAS+’s scalability by indexing data from the Software Heritage archive, which is the world’s
largest archive of publicly available source-code.

The three papers are connected to each other. In particular, the second and third paper (Ap-
pendixes B and C) are based on the ideas proposed in the first paper (Appendix A). The second
and third paper were written simultaneously and are independent. Because the papers are con-
nected, there is limited overlap between the papers as they share some common definitions,
examples, etc. The second paper re-uses the running example from the first paper. Therefore,
Figures A.1 and A.5, and Table A.1 re-appear in Appendix B. The background sections of the
second and third paper (Sections B.2 and C.3) re-introduce some concepts defined already in
Appendix A. For example, the definitions of the discriminative byte (Definition C.2) and the ψ-
partitioning (Definition C.3) are based on the corresponding definitions in Appendix A, though
they are rephrased and shortened.

In the third paper we use a different syntax for the descendant axis with respect to the first paper.
For example, in the first paper we write /bom//battery and the equivalent query path with
the syntax from the third paper is /bom/**/battery. The third paper adopts this shell-like
syntax for the descendant axis because the targeted use case is to match files in a hierarchical
source code archive and the users of this system are likely more familiar with a shell-link syntax.

https://dx.doi.org/10.1007/978-3-030-82472-3_10

33

CHAPTER 4

Conclusion

4.1 Limitations

Query Formulation The RCAS and RCAS+ indexes are designed to efficiently answer CAS
queries on semi-structured, hierarchical data. CAS queries are not the only way to query such
data. Twig-pattern queries [BKH+17] define tree-shaped patterns that are matched against the
database. Like CAS queries, twig queries can contain parent-child and ancestor-descendant rela-
tionships (among others). Indeed, CAS queries can be seen as a building block for twig queries,
since twig queries can contain CAS queries as subqueries (e.g., a root-to-leaf path in a twig query
can be a CAS query). As a result, RCAS and RCAS+ can be used as a fast access method for
twig queries. CAS and twig queries are a form of structured queries that are useful when users
know the (rough) structure of the data. In contrast, unstructured queries are used to explore new
datasets. Users are accustomed to search engines like Google that provide access to vast datasets
through unstructured queries in the form of keyword searches. Unstructured queries give laymen
a simple and intuitive search interface, but the problem with such types of queries is that they
often return unrelated search results. CAS queries are more complicated to formulate since a

34 Chapter 4. Conclusion

user needs to decide what a good query path looks like, where to put possible wildcards, etc., but
this flexibility allows users to formulate more specific queries.

Placement of Descendant Axis RCAS and RCAS+ struggle with CAS queries that have a de-
scendant axis close to the beginning of the query path, e.g., //battery or /bom//brake.
RCAS and RCAS+ use prefix searches to answer the path predicates, but to answer, e.g., //-
battery efficiently we would need suffix searches instead of prefix searches. When our CAS
indexes evaluate this path predicate they may have to traverse a large part of the tree because
as soon the query executor encounters the descendant axis it cannot use the path predicate any-
more to prune the search space during query evaluation. Normally, when the query path and
the current node’s path substring do not match, the query executor can discard the node and its
subtree because no path suffix can match the query path anymore. This is no longer true after the
query executor encounters the first descendant axis because even if the query path and the cur-
rent node’s path substring do not match, it is still possible that the descendant axis skips over the
mismatch and the query path’s suffix matches the remainder of the data. Since the path predicate
can no longer be used to prune subtrees during query evaluation, the query executor can from
here onwards only rely on the value predicate for pruning. Depending on the selectivity of the
value predicate, this can be expensive.

There are several ways how to approach this problem. A solution inspired by similar techniques
in information retrieval is to reorder the path labels such that the descendant axis is always at the
end of the query path [MRS08]. For example, if we know that queries typically start with the
descendant axis and look for example like //battery, it is more efficient to reorder the path
labels and evaluate the query path battery// instead (in essence, we turn a suffix search into a
prefix search that we can evaluate efficiently). This means that we have to reorder the paths in the
index as well: instead of storing a path /bom/item/car/battery we must store the path
battery/car/item/bom/. The disadvantage with this approach is the increased storage
requirements, because we need to store the data twice: once with forward paths and once with
backward paths. There exist similar techniques for when the descendant axis is at an arbitrary
position in the query path, see [MRS08]. If the query workload is known in advance, the user
can decide whether to store forward and/or backward paths.

Index Updates We proposed two restructuring techniques to update the RCAS index when the
positions of the discriminative bytes change: strict and lazy restructuring. Strict restructuring

4.2 Summary 35

is slow but it preserves the dynamic interleaving that makes the index robust. In contrast, lazy
restructuring is fast but it does not preserve the dynamic interleaving. Experimentally, we show
that lazy interleaving ensures robust CAS query performance despite introducing small irregular-
ities in the dynamic interleaving. However, analytically, we cannot say how much the dynamic
interleaving degrades over time with lazy restructuring. Therefore, a fast restructuring technique
that provably maintains robust query performance is still missing.

4.2 Summary

In this thesis, we develop new index structures to efficiently evaluate Content-and-Structure
(CAS) queries on big semi-structured, hierarchical data. CAS queries consist of two predi-
cates that select data items based on (i) their value for some attribute and (ii) their location in
the hierarchical structure of the data. We look for two qualities in a CAS index: robustness and
scalability. Robustness means that in the absence of any information about the query workload,
an index optimizes the average query performance over all queries. A scalable CAS index is not
constrained by the size of the available memory, and can be bulk-loaded and updated efficiently
to keep up with the influx of large amounts of data.

We observe that to provide robust CAS query performance an access method must integrate
the content and structure of the data in a well-balanced way such that the two predicates of
CAS queries can be evaluated simultaneously. Consequently, we propose a novel interleaving
scheme, called dynamic interleaving, that interleaves the paths and values of data items in a well-
balanced way without prioritizing either dimension of the data. Dynamic interleaving achieves
this by interleaving the binary representation of the paths and values at their first byte after their
longest common prefix, known as the discriminative byte. Interleaving at a common prefix does
not partition the data, but interleaving at the first byte after the longest common prefix does
exactly this: it partitions the data and helps to prune the search space during a query.

We propose the Robust CAS (RCAS) index that stores dynamically interleaved keys to offer
robust CAS query performance. The RCAS index is kept in main memory and is based on a
memory-optimized trie (ART [LKN13]). Its trie structure allows RCAS to answer the value and
path predicates of CAS queries through a mix of range and prefix searches.

We develop several techniques to update the RCAS index and its dynamic interleaving when
new data is inserted. The problem is that inserting new keys into RCAS can change the dynamic

36 Chapter 4. Conclusion

interleaving of existing keys in RCAS. Thus, there exists a trade-off between query runtime and
update cost: if we want to preserve the dynamic interleaving that enables RCAS’s robust query
performance, we may have to restructure large parts of the index when new data inserted. We de-
velop two algorithms that optimize for query performance and update performance, respectively.
Additionally, we explore the idea of using differential files to update RCAS more efficiently.

Lastly, we propose the scalable RCAS+ index that, unlike RCAS, is not constrained by the size
of the available memory because we store RCAS+ on disk. Additionally, we develop a new
bulk-loading algorithm for RCAS+. This algorithm optimizes the CPU, memory, and disk usage,
respectively, making it possible to build RCAS+ for large datasets.

In summary, in this thesis we propose a CAS index that offers robust query performance through
a novel dynamic interleaving scheme and that scales to large datasets.

4.3 Future Work

Future work points in several directions. First, in this thesis, we consider two-dimensional keys
that consist of a path and a value dimension. It would be interesting to generalize our solutions to
multi-dimensional data to cover use cases where efficient access to the structure of the data and
more than one content attribute is needed. That is, the composite keys would consist of a path
dimension that represents the data item’s location in the hierarchical structure and one or more
values that represent the content of the data item. With such a solution we could, for example,
index for each revision in the SWH archive the paths of the files that are modified, the commit
time, and the commit author.

We have shown how to update the in-memory RCAS index and how to scale it to large datasets
using our disk-resident RCAS+ index. The disk-resident RCAS+ index can be efficiently bulk-
loaded, but it does not support updates yet. To do so we could adapt the update routines that we
developed for RCAS in Appendix B. The problem with this approach is that in-place updates
to disk-resident indexes are a known scalability bottleneck [OCGO96]. Therefore, we opt for
out-of-place updates as pioneered by Log-Structured Merge (LSM) trees [OCGO96]. We plan
to combine an in-memory RCAS index with a series of disk-resident RCAS+ indexes that grow
exponentially in size. In-place insertions are accumulated in RCAS and when the index grows
too big, we apply all insertions at once using bulk-loading to create a read-optimized immutable
RCAS+ index on disk. Bulk-loading can be performed in the background such that updates to

4.3 Future Work 37

the in-memory RCAS index do not stall, which makes sure that we can keep up with the influx
of new data.

Currently, our solutions are stand-alone implementations, but it would be interesting to integrate
them into actual database systems. This would bring a new set of challenges as we would have
to integrate our access methods with the query optimizer, query executor, storage engine, etc.

Part II

Publications

41

APPENDIX A

Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

Reprinted from:

K. Wellenzohn, M. H. Böhlen, S. Helmer. “Dynamic Interleaving of Content and Structure for
Robust Indexing of Semi-Structured Hierarchical Data”, in PVLDB, 13(10): pages 1641–1653,
2020. doi:10.14778/3401960.3401963

and the corresponding technical report:

K. Wellenzohn, M. H. Böhlen, S. Helmer. “Dynamic Interleaving of Content and Structure for
Robust Indexing of Semi-Structured Hierarchical Data (Extended Version)”, Technical Report

CoRR, 14 pages, 2020. https://arxiv.org/abs/2006.05134

https://dx.doi.org/10.14778/3401960.3401963
https://arxiv.org/abs/2006.05134

42
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

Abstract

We propose a robust index for semi-structured hierarchical data that supports content-and-
structure (CAS) queries specified by path and value predicates. At the heart of our approach
is a novel dynamic interleaving scheme that merges the path and value dimensions of composite
keys in a balanced way. We store these keys in our trie-based Robust Content-And-Structure
index, which efficiently supports a wide range of CAS queries, including queries with wild-
cards and descendant axes. Additionally, we show important properties of our scheme, such as
robustness against varying selectivities, and demonstrate improvements of up to two orders of
magnitude over existing approaches in our experimental evaluation.

A.1 Introduction

A lot of the data in business and engineering applications is semi-structured and inherently hi-
erarchical. Typical examples are bills of materials (BOMs) [BFF+15], enterprise asset hierar-
chies [FBK+13], and enterprise resource planning applications [FBK+15]. A common type of
queries on such data are content-and-structure (CAS) queries [MHSB15], containing a value

predicate on the content of some attribute and a path predicate on the location of this attribute in
the hierarchical structure.

As real-world BOMs grow to tens of millions of nodes [FBK+13], we need dedicated CAS access
methods to support the efficient processing of CAS queries. Existing CAS indexes often lead to
large intermediate results, since they either build separate indexes for, respectively, content and
structure [MHSB15] or prioritize one dimension over the other (i.e., content over structure or
vice versa) [Apa20, CSF+01, STR+15]. We propose a well-balanced integration of paths and
values in a single index that provides robust performance for CAS queries, meaning that the
index prioritizes neither paths nor values.

We achieve the balanced integration of the path and value dimension with composite keys that
interleave the bytes of a path and a value. Interleaving is a well-known technique applied to
multidimensional keys, for instance Nishimura et al. look at a family of bit-merging functions
[NY17] that include the c-order [NY17] and the z-order [Mor66, OM84] space-filling curves.
Applying space-filling curves on paths and values is subtle, though, and can result in poor query
performance because of varying key length, different domain sizes, and the skew of the data. The

A.1 Introduction 43

z-order curve, for example, produces a poorly balanced partitioning of the data if the data contains
long common prefixes [Mar99]. The paths in a hierarchical structure exhibit this property: they
have, by their very nature, long common prefixes. The issue with common prefixes is that they
do not help to partition the data, since they are the same for all data items. However, the first byte
following a longest common prefix does exactly this: it distinguishes different data items. We
call such a byte a discriminative byte. The distribution of discriminative path and value bytes in
an interleaved key determines the order in which an index partitions the data and, consequently,
how efficiently queries can be evaluated. The z-order of a composite key often clusters the
discriminative path and value bytes, instead of interleaving them. This leads to one dimension—
the one whose discriminative bytes appear first—to be prioritized over the other, precluding
robust query performance.

We develop a dynamic interleaving scheme that interleaves the discriminative bytes of paths and
values in an alternating way. This leads to a well-balanced partitioning of the data with a robust
query performance. Our dynamic interleaving is data-driven since the positions of the discrim-
inative bytes depend on the distribution of the data. We use the dynamic interleaving to define
the Robust Content-and-Structure (RCAS) index for semi-structured hierarchical data. We build
our RCAS index as an in-memory trie data-structure [LKN13] to efficiently support the basic
search methods for CAS queries: range searches and prefix searches. Range searches enable
value predicates that are expressed as a value range and prefix searches allow for path predicates
that contain wildcards and descendant axes. Crucially, tries in combination with dynamically
interleaved keys allow us to efficiently evaluate path and value predicates simultaneously. We
provide an efficient bulk-loading algorithm for RCAS that scales linearly with the size of the
dataset. Incremental insertions and deletions are not supported.

Our main contributions can be summarized as follows:

• We develop a dynamic interleaving scheme to interleave paths and values in an alternating
way using the concept of discriminative bytes. We show how to compute this interleaving
by partitioning the data. We prove that our dynamic interleaving is robust against varying
selectivities (Section A.5).

• We propose the in-memory, trie-based Robust Content-and-Structure (RCAS) index for
semi-structured hierarchical data. The RCAS achieves its robust query performance by a
well-balanced integration of paths and values via our dynamic interleaving scheme (Sec-
tion A.6).

44
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

• Our RCAS index supports a broad spectrum of CAS queries that include wildcards and the
descendant axis. We show how to evaluate CAS queries through a combination of range
and prefix searches on the trie-based structure of the RCAS index (Section A.6.4).

• An exhaustive experimental evaluation with real-world and synthetic datasets shows that
RCAS delivers robust query performance. We get improvements of up to two orders of
magnitude over existing approaches (Section A.7).

A.2 Running Example

We consider a company that stores the bills of materials (BOMs) of its products. BOMs represent
the hierarchical assembly of components to final products. Each BOM node is stored as a tuple in
a relational table, which is common for hierarchies, see, e.g., SAP’s storage of BOMs [BFF+15,
FBK+13, FBK+15] and the Software Heritage Archive [DCZ17, PSZ20]. A CAS index is used
to efficiently answer queries on the structure (location of a node in the hierarchy) and the content
of an attribute (e.g., the weight or capacity). The paths of all nodes in the BOM that have a value
for the indexed attribute as well as the value itself are indexed in the CAS index. The index is
read-only, updated offline, and kept in main memory.

Figure A.1 shows the hierarchical representation of a BOM for three products. The components
of each product are organized under an item node. Components can have attributes to record
additional information, e.g., the weight of a battery. Attributes are represented by special nodes
that are prefixed with an @ and that have an additional value. For example, the weight of the
rightmost battery is 250’714 grams and its capacity is 80000 Wh.

bom

item

canoe

@weight
69200

carabiner

@weight
241

item

car

brake

@weight
3266

bumper

@weight
2700

battery

@weight
250800

battery

@weight
250800

item

car

belt

@weight
2890

battery

@weight
250714

@capacity
80000

Figure A.1: Example of a bill of materials (BOM).

A.3 Related Work 45

Next, we look at an example CAS query. We roughly follow the syntax of query languages for
semistructured data, such as XQuery [KCK+03] or JSONiq [FF13], utilizing simple FLWOR
expressions.

Example A.1. To reduce the weight of cars we look for all heavy car parts, i.e., parts weighing

at least 50 kilograms (“//” matches a node and all its descendants in a hierarchical structure):

Q: for $c in /bom/item/car//

where $c/@weight >= 50000

return $c

The answer to query Q are the three framed nodes in Figure A.1. Our goal is an index that guides
us as quickly as possible to these nodes. Indexes on either paths or values do not perform well.
An index built for only the values of weight nodes also accesses the node for the canoe. A purely
structural index for the paths additionally has to look at the weight of other car parts. Our RCAS
index considers values and paths together to get a good query performance.

A.3 Related Work

We begin with a review of existing CAS indexes [CSF+01, KKNR04, LAAE06, MHSB15,
STR+15]. IndexFabric [CSF+01] prioritizes the structure of the data over its values. It stores the
concatenated path and value of a key in a disk-optimized PATRICIA trie [Mor68] that supports
incremental updates (i.e., inserts and deletes). IndexFabric does not offer robust CAS query per-
formance since a CAS query must fully evaluate a query’s path predicate before it can evaluate
its value predicate. This leads to large intermediate results if the path predicate is not selective.

The hierarchical database system Apache Jackrabbit Oak [Apa20] implements a CAS index that
prioritizes values over paths. Oak indexes (value v, path p)-pairs in a DataGuide-like index that
supports updates. For each value v, Oak stores a DataGuide [GW97] of all paths p that have this
particular value v. Query performance is poor if the value predicate is not selective because the
system must search many DataGuides.

The CAS index of Microsoft Azure’s DocumentDB (now Cosmos DB) concatenates paths and
values [STR+15] and stores the result in a Bw-tree [LLS13] that supports updates. Depending on
the expected query type(s) (point or range queries), the system either stores forward keys (e.g.,
/a/b/c) or reverse keys (e.g., c/b/a). To reduce the space requirements, forward and reverse

46
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

keys are split into trigrams (three consecutive node labels). During the evaluation of a CAS query
these trigrams must be joined and matched against the query, which is slow. Moreover, choosing
forward or reverse keys prioritizes structure over values or vice-versa.

Mathis et al. [MHSB15] propose a CAS index that consists of two index structures: a B-tree to
index the values and a structural summary (e.g., a DataGuide [GW97]) to index the structure of
the data. The DataGuide assigns an identifier (termed PCR) to each distinct path in the docu-
ments. The B-tree stores the values along with the PCRs. The path and value predicates of a CAS
query are independently evaluated on the DataGuide and the B-tree, and the intermediate results
are joined on the PCR. This is expensive if the intermediate results are large (i.e., at least one
predicate is not selective) but the final result is small. Updates are supported and are executed on
the B-tree as well as the DataGuide.

Kaushik et al. [KKNR04] present an approach that joins inverted lists for answering CAS queries.
They use a 1-index [MS99] to evaluate path predicates and B-trees to evaluate value predi-
cates. This approach evaluates both predicates independently and exhibits the same problems
as [MHSB15]. Updates are not discussed.

FLUX [LAAE06] computes a Bloom filter for each path into which its labels are hashed and
stores these Bloom filters along with the values in a B-tree. Query evaluation proceeds as follows.
The value predicate is matched on the B-tree and for each matched value the corresponding
Bloom filter C is compared to a Bloom filter Q built for the query path. If each bit that is set in
Q is also set in C, the path is a possible match that needs to be double-checked through database
accesses. Value predicates that are not selective produce large intermediate results. Updates are
not discussed.

Some document databases for semi-structured, hierarchical data (MongoDB [Mon20], CouchDB
[Cou20], and AsterixDB [AAA+14]) use pure value indexes (e.g., standard B-trees) that index
the content of documents but not their structure. They create an index on a predefined path (e.g.,
/person/name) and only index the corresponding values. They cannot answer CAS queries
with arbitrary path predicates.

Besides pure value indexes there are also pure structure indexes that focus on complex twig
queries with different axes (ancestor, descendant, sibling, etc.). DeltaNI [FBK+13] and Order
Indexes [FBK+17] are recent proposals in this area. Pure structure indexes cannot efficiently
answer CAS queries that also include value predicates.

A.4 Background 47

Our RCAS index integrates paths and values by interleaving them. This is similar to the bit-
merging family of space-filling curves that combine the binary representation of a key’s dimen-
sions. We compare our approach to two representatives: the c-order curve [NY17] and the z-
order curve [Mor66, OM84]. The c-order curve is obtained by concatenating dimensions, which
prioritizes one of the dimensions. The selectivity of the predicate on the prioritized dimension
determines the query performance. If it is high and the other selectivity is low, the c-order curve
performs badly. The z-order curve is a space-filling curve that is used, among others, by UB-
trees [RMF+00] and k-d tries [NS08, OM84, Sam06]. It is obtained by the bit-wise interleaving
of dimensions. The z-order curve produces an unbalanced partitioning of the data with poor
query performance if the data contains long common prefixes. Markl calls this the “puff-pastry
effect” [Mar99] because the query performance deteriorates to that of a c-order curve that fully
orders one dimension after another. The Variable UB-tree [Mar99] uses a pre-processing step
to encode the data in such a way that the puff-pastry effect is avoided. The encoding is not
prefix-preserving and cannot be used in our CAS index. We need prefix searches to evaluate path
predicates. The c-order and z-order curves are static interleaving schemes that do not take the
data distribution into account. Indexes based on static schemes can be updated efficiently since
insertions and deletions do not affect existing interleavings. The Variable UB-tree does not sup-
port incremental updates [Mar99] since its encoding function adapts to the data distribution and
must be recomputed whenever the data changes. Similarly, our data-driven dynamic interleaving
does not support incremental updates since the position of the discriminative bytes may change
when keys are inserted or deleted.

QUILTS [NY17] devises a static interleaving scheme for a specific query workload. Index up-
dates, although not discussed, would work as for other static schemes (e.g., c- and z-order). Our
dynamic interleaving adapts to the data distribution rather than a specific query workload. We
do not optimize a specific workload but want to support a wide range of queries in a robust way,
including ad-hoc queries.

A.4 Background

Composite Keys. We use composite keys that consist of a path dimension P and value dimension
V to index attributes in hierarchical data. Neither paths nor values nor the combination of paths
and values need to be unique in a database. Composite keys can be extracted from popular
semi-structured hierarchical data formats, such as JSON and XML.

48
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

Definition A.1. (Composite Key) A composite key k states that a node with path k.P in a database

has value k.V .

Let D ∈ {P,V} be the path or value dimension. We write k.D to access k’s path (if D = P) or
value (if D = V). The value dimension can be of any primitive data type. In the remainder of
this paper we use one byte ASCII characters for the path dimension and hexadecimal numbers
for the value dimension.

Example A.2. In our running example we index attribute @weight. Table A.1 shows the com-

posite keys for the @weight attributes from the BOM in Figure A.1. Since only the @weight

attribute is indexed, we omit the label @weight in the paths in Table A.1. The values of the

@weight attribute are stored as 32 bit unsigned integers.

The set of composite keys in our running example is denoted by K1..7 = {k1,k2, . . . ,k7}, see
Table A.1. We use a sans-serif font to refer to concrete values. Further, we use notation K2,5,6,7

to refer to {k2,k5,k6,k7}.

Table A.1: A set K1..7 = {k1, . . . ,k7} of composite keys. The values are stored as 32 bit unsigned
integers.

Path Dimension P Value Dimension V
k1 /bom/item/canoe$ 00010E50
k2 /bom/item/carabiner$ 000000F1
k3 /bom/item/car/battery$ 0003D35A
k4 /bom/item/car/battery$ 0003D3B0
k5 /bom/item/car/belt$ 00000B4A
k6 /bom/item/car/brake$ 00000CC2
k7 /bom/item/car/bumper$ 00000A8C

1 3 5 7 9 11 13 15 17 19 21 23 1 2 3 4

Querying. Content-and-structure (CAS) queries contain a path predicate and value predicate
[MHSB15]. The path predicate is expressed as a query path q that may include // to match a
node itself and all its descendants, and the wildcard * to match all of a node’s children. The latter
is useful for data integrated from sources using different terminology (e.g., product instead of
item in Fig. A.1).

Definition A.2. (Query Path) A query path q is denoted by q = e1 λ1 e2 λ2 . . . λm−1 em. Each ei,

i ≤ m, is either the path separator / or the descendant-or-self axis // that matches zero to any

number of descendants. The final path separator em is optional. λi, i < m, is either a label or the

wildcard * that matches any label.

A.4 Background 49

Definition A.3. (CAS Query) A CAS query Q(q,θ) consists of a query path q and a value

predicate θ on an attribute A, where θ is a simple comparison θ = AΘv or a range comparison

θ = vl ΘAΘ′ vh where Θ,Θ′ ∈ {=,<,>,≤,≥}. Let K be a set of composite keys. CAS query Q

returns all composite keys k ∈ K such that k.P satisfies q and k.V satisfies θ .

Example A.3. The CAS query from Section A.2 is expressed as

Q(/bom/item/car//,@weight ≥ 50000) and returns all car parts weighing more than

50000 grams in Figure A.1. CAS query Q(/bom/*/car/battery,@capacity = 80000)
looks for all car batteries that have a capacity of 80kWh. The wildcard * matches any child of

bom (only item children exist in our example).

Representation of Keys. Paths and values are prefix-free byte strings as illustrated in Table A.1.
To get prefix-free byte strings we append the end-of-string character (ASCII code 0x00, here
denoted by $) to each path. This guarantees that no path is prefix of another path. Fixed-length
byte strings (e.g., 32 bit numbers) are prefix-free because of the fixed length.

Let s be a byte-string, then len(s) denotes the length of s and s[i] denotes the i-th byte in s. The
left-most byte of a byte-string is byte one. s[i] = ε is the empty string if i > len(s). s[i, j] denotes
the substring of s from position i to j and s[i, j] = ε if i > j.

Interleaving of Composite Keys. We integrate path k.P and value k.V of a key k by interleav-
ing them. Figure A.2 shows various interleavings of key k6 from Table A.1. Value bytes are
underlined and shown in red, path bytes are shown in blue. The first two rows show the two
c-order curves: path-value and value-path concatenation (IPV and IV P). The byte-wise interleav-
ing IBW in the third row interleaves one value byte with one path byte. Note that none of these
interleavings is well-balanced. The byte-wise interleaving is not well-balanced, since all value-
bytes are interleaved with parts of the common prefix of the paths (/bom/item/ca). In our
experiments we use the surrogate-based extension proposed by Markl [Mar99] to more evenly
interleave dimensions of different lengths (see Section A.7).

Approach Interleaving of Key k6
Path-Value Concatenation /bom/item/car/brake$00000CC2
Value-Path Concatenation 00000CC2/bom/item/car/brake$
Byte-Wise Interleaving 00/00b0CoC2m/item/car/brake$

Figure A.2: Key k6 is interleaved using different approaches

50
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

A.5 Dynamic Interleaving

Our dynamic interleaving is a data-driven approach to interleave the paths and values of a set of
composite keys K. It adapts to the specific characteristics of paths and values, such as varying
length, differing domain sizes, and the skew of the data. To this end, we consider the distribution
of discriminative bytes in the indexed data.

Definition A.4. (Discriminative Byte) The discriminative byte of a set of composite keys K in

dimension D ∈ {P,V} is the position of the first byte in dimension D for which not all keys are

equal:

dsc(K,D) = m iff

∃ki,k j ∈ K, i 6= j(ki.D[m] 6= k j.D[m]) and

∀ki,k j ∈ K, l < m(ki.D[l] = k j.D[l])

If all values of dimension D in K are equal, the discriminative byte does not exist. In this case

we define dsc(K,D) = len(ki.D)+1 for some ki ∈ K. 2

Example A.4. Table A.2 illustrates the position of the discriminative bytes for the path and value

dimensions for various sets of composite keys K.

Table A.2: Illustration of the discriminative bytes for K1..7 from Table A.1 and various subsets
of it.

Composite Keys K dsc(K,P) dsc(K,V)

K1..7 13 2
K2,5,6,7 14 3
K5,6,7 16 3
K6 21 5

Discriminative bytes are crucial during query evaluation since at the position of the discriminative
bytes the search space can be narrowed down. We alternate in a round-robin fashion between
discriminative path and value bytes in our dynamic interleaving. Note that in order to determine
the dynamic interleaving of a key k, which we denote by IDY(k,K), we have to consider the set of
keys K to which k belongs and determine where the keys in K differ from each other (i.e., where
their discriminative bytes are located). Each discriminative byte partitions K into subsets, which
we recursively partition further.

A.5 Dynamic Interleaving 51

A.5.1 Partitioning by Discriminative Bytes

The partitioning of a set of keys K groups composite keys together that have the same value for
the discriminative byte in dimension D. Thus, K is split into at most 28 non-empty partitions,
one partition for each value (0x00 to 0xFF) of the discriminative byte of dimension D.

Definition A.5. (ψ-Partitioning) ψ(K,D) = {K1, . . . ,Km} is the ψ-partitioning of composite

keys K in dimension D iff all partitions are non-empty (Ki 6= /0 for 1 ≤ i ≤ m), the number m of

partitions is minimal, and:

1. All keys in partition Ki ∈ ψ(K,D) have the same value for the discriminative byte of K in

dimension D:

– ∀ku,kv ∈ Ki (ku.D[dsc(K,D)] = kv.D[dsc(K,D)])

2. The partitions are disjoint:

– ∀Ki,K j ∈ ψ(K,D)(Ki 6= K j⇒ Ki∩K j = /0)

3. The partitioning is complete:

– K =
⋃

Ki∈ψ(K,D)Ki 2

Let k ∈ K be a composite key. We write ψk(K,D) to denote the ψ-partitioning of k with respect
to K and dimension D, i.e., the partition in ψ(K,D) that contains key k.

Example A.5. Let K1..7 be the set of composite keys from Table A.1. The ψ-partitioning of

selected sets of keys in dimension P or V is as follows:

• ψ(K1..7,V) = {K2,5,6,7,K1,K3,4}

• ψ(K2,5,6,7,P) = {K2,K5,6,7}

• ψ(K5,6,7,V) = {K5,K6,K7}

• ψ(K6,V) = ψ(K6,P) = {K6}

The ψ-partitioning of key k6 with respect to sets of keys and dimensions is as follows:

• ψk6(K
1..7,V) = K2,5,6,7

• ψk6(K
6,V) = ψk6(K

6,P) = K6. 2

52
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

The crucial property of our partitioning is that the position of the discriminative byte for dimen-
sion D increases if we ψ-partition K in D. This monotonicity property of the ψ-partitioning
holds since every partition is built based on the discriminative byte and to partition an existing
partition we need a discriminative byte that will be positioned further down in the byte-string.
For the alternate dimension D, i.e., D = P if D = V and D = V if D = P, the position of the
discriminative byte remains unchanged or may increase.

Theorem A.1. (Monotonicity of Discriminative Bytes) Let Ki ∈ψ(K,D) be one of the partitions

of K after partitioning in dimension D. In dimension D, the position of the discriminative byte in

Ki is strictly greater than in K while, in dimension D, the discriminative byte is equal or greater

than in K, i.e.,

Ki ∈ ψ(K,D)∧Ki ⊂ K⇒

dsc(Ki,D)> dsc(K,D)∧dsc(Ki,D)≥ dsc(K,D)

Proof. The first line states that Ki ⊂ K is one of the partitions of K. From Definition A.5 it
follows that the value k.D[dsc(K,D)] is the same for every key k ∈ Ki. From Definition A.4 it
follows that dsc(Ki,D) 6= dsc(K,D). By removing one or more keys from K to get Ki, the keys
in Ki will become more similar compared to those in K. That means, it is not possible for the
keys in Ki to differ in a position g < dsc(K,D). Consequently, dsc(Ki,D) ≮ dsc(K,D) for any
dimension D (so this also holds for D: dsc(Ki,D) ≮ dsc(K,D)). Thus dsc(Ki,D) > dsc(K,D)

and dsc(Ki,D)≥ dsc(K,D).

Example A.6. The discriminative path byte of K1..7 is 13 while the discriminative value byte of

K1..7 is 2 as shown in Table A.2. For partition K2,5,6,7, which is obtained by partitioning K1..7

in the value dimension, the discriminative path byte is 14 while the discriminative value byte

is 3. The positions of both discriminative bytes have increased. For partition K5,6,7, which is

obtained by partitioning K2,5,6,7 in the path dimension, the discriminative path byte is 16 while

the discriminative value byte is 3. The position of the discriminative path byte has increased

while the position of the discriminative value byte has not changed.

When computing the dynamic interleaving of a composite key k ∈ K we recursively ψ-
partition K while alternating between dimension V and P. This yields a partitioning sequence
(K1,D1), . . . ,(Kn,Dn) for key k with K1 ⊃ K2 ⊃ ·· · ⊃ Kn. We start with K1 = K and D1 = V .
Next, K2 = ψk(K1,V) and D2 = D1 = P. We continue with the general scheme Ki+1 = ψk(Ki,Di)

and Di+1 = Di. This goes on until we run out of discriminative bytes in one dimension, which

A.5 Dynamic Interleaving 53

means ψk(K,D) = K. From then on, we can only partition in dimension D. When we run out of
discriminative bytes in this dimension as well, that is ψk(K,D) = ψk(K,D) = K, we stop. The
partitioning sequence is finite due to the monotonicity of the ψ-partitioning (see Lemma A.1),
which guarantees that we make progress in every step in at least one dimension. Below we define
a partitioning sequence.

Definition A.6. (Partitioning Sequence) The partitioning sequence ρ(k,K,D) =

((K1,D1), . . . ,(Kn,Dn)) of a composite key k ∈ K denotes the recursive ψ-partitioning of

the partitions to which k belongs. The pair (Ki,Di) denotes the partitioning of Ki in dimension

Di. The final partition Kn cannot be partitioned further, hence Dn = ⊥. ρ(k,K,D) is defined as

follows:1

ρ(k,K,D) =

(K,D)◦ρ(k,ψk(K,D),D) if ψk(K,D)⊂ K

ρ(k,K,D) if ψk(K,D) = K∧ψk(K,D)⊂ K

(K,⊥) otherwise

Example A.7. In the following we illustrate the step-by-step expansion of ρ(k6,K
1..7,V) to get

k6’s partitioning sequence.

ρ(k6,K
1..7,V) =

= (K1..7,V)◦ρ(k6,K
2,5,6,7,P)

= (K1..7,V)◦ (K2,5,6,7,P)◦ρ(k6,K
5,6,7,V)

= (K1..7,V)◦ (K2,5,6,7,P)◦ (K5,6,7,V)◦ρ(k6,K
6,P)

= (K1..7,V)◦ (K2,5,6,7,P)◦ (K5,6,7,V)◦ (K6,⊥)

Notice the alternating partitioning in, respectively, V and P. We only deviate from this if par-

titioning in one of the dimensions is not possible. For instance, K3,4 cannot be partitioned in

dimension P and therefore we get

ρ(k4,K
1..7,V) = (K1..7,V)◦ (K3,4,V)◦ (K4,⊥) 2

There are two key ingredients to our dynamic interleaving: the monotonicity of discrimina-
tive bytes (Lemma A.1) and the alternating ψ-partitioning (Definition A.6). The monotonicity

1Operator ◦ denotes concatenation, e.g., a◦b = (a,b) and a ◦ (b,c) = (a,b,c)

54
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

guarantees that each time we ψ-partition K we advance the discriminative byte in at least one
dimension. The alternating ψ-partitioning ensures that we interleave paths and values.

A.5.2 Interleaving

We determine the dynamic interleaving IDY(k,K) of a key k ∈ K via k’s partitioning sequence ρ .
For each element in ρ , we generate a tuple containing two strings sP and sV and the partitioning
dimension of the element. The strings sP and sV are composed of substrings of k.P and k.V ,
ranging from the previous discriminative byte up to, but excluding, the current discriminative
byte in the respective dimension. The order of sP and sV in a tuple depends on the dimension
used in the previous step: the dimension that has been chosen for the partitioning comes first.
Formally, this is defined as follows:

Definition A.7. (Dynamic Interleaving) Let k ∈ K be a composite key and let ρ(k,K,V) =

((K1,D1), . . . , (Kn,Dn)) be the partitioning sequence of k. The dynamic interleaving IDY(k,K) =

(t1, . . . , tn) of k is a sequence of tuples ti, where ti = (sP,sV ,D) if Di−1 = P and ti = (sV ,sP,D)

if Di−1 = V . The path and value substrings, sP and sV , and the partitioning dimension D are

determined as follows:

ti.sP = k.P[dsc(Ki−1,P),dsc(Ki,P)−1]

ti.sV = k.V [dsc(Ki−1,V),dsc(Ki,V)−1]

ti.D = Di

To correctly handle the first tuple we define dsc(K0,V) = 1, dsc(K0,P) = 1 and D0 =V . 2

Example A.8. We compute the tuples for the dynamic interleaving IDY(k6,K
1..7) = (t1, . . . , t4)

of key k6 using the partitioning sequence ρ(k6,K
1..7,V) = ((K1..7,V), (K2,5,6,7,P), (K5,6,7,V),

(K6,⊥)) from Example A.7. The necessary discriminative path and value bytes can be found in

Table A.2. Table A.3 shows the details of each tuple of k6’s dynamic interleaving with respect to

K1..7.

The final dynamic interleavings of all keys from Table A.1 are displayed in Table A.4. We high-

light in bold the values of the discriminative bytes at which the paths and values are interleaved,

e.g., for key k6 these are bytes 00, /, and 0C.

A.5 Dynamic Interleaving 55

Table A.3: Computing the dynamic interleaving IDY(k6,K
1..7).

t sV sP D
t1 k6.V [1,1] = 00 k6.P[1,12] = /bom/item/ca V
t2 k6.V [2,2] = 00 k6.P[13,13] = r P
t3 k6.V [3,2] = ε k6.P[14,15] = /b V
t4 k6.V [3,4] = 0CC2 k6.P[16,20] = rake$ ⊥

Table A.4: The dynamic interleaving of the composite keys in K1..7. The values of the discrimi-
native bytes are written in bold.

k Dynamic Interleaving IDY(k,K1..7)
k2 ((00,/bom/item/ca,V), (00,r,P), (abiner$,00F1,⊥))
k7 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0A8C,umper$,⊥))
k5 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0B4A,elt$,⊥))
k6 ((00,/bom/item/ca,V), (00,r,P), (/b,ε,V), (0CC2,rake$,⊥))
k1 ((00,/bom/item/ca,V), (010E50,noe$,⊥))
k3 ((00,/bom/item/ca,V), (03D3,r/battery$,V), (5A,ε,⊥))
k4 ((00,/bom/item/ca,V), (03D3,r/battery$,V), (B0,ε,⊥))

A.5.3 Efficiency of Interleavings

We introduce a cost model to measure the efficiency of different interleaving schemes. We
assume that the interleaved keys are arranged in a tree-like search structure. Each node represents
the partitioning of the composite keys by either path or value, and the node branches for each
different value of a discriminative path or value byte. We simplify the cost model by assuming
that the search structure is a complete tree with fanout o where every root-to-leaf path contains
h edges (h is called the height). Further, we assume that all nodes on one level represent a
partitioning in the same dimension φi and we use a vector φ(φ1, . . . ,φh) to specify the partitioning
dimension on each level. Figure A.3 visualizes this scheme.

.

fanout o

φ1 =V

φ2 = P

φ3 =V

φh = P

ςV = 2/3

ςP = 1/3

Figure A.3: The search structure in our cost model is a complete tree of height h and fanout o.

56
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

A search starts at the root and traverses the data structure to determine the answer set. In the
case of range queries, more than one branch must be followed. A search follows a fraction of
the outgoing branches o originating at this node. We call this the selectivity of a node (or just
selectivity). We assume that every path node has a selectivity of ςP and every value node has
the selectivity of ςV . The cost Ĉ of a search, measured in the number of visited nodes during the
search, is as follows:

Ĉ(o,h,φ ,ςP,ςV) = 1+
h

∑
l=1

l

∏
i=1

(o · ςφi)

If a workload is known upfront, a system can optimize indexes to support specific queries. Our
goal is an access method that can deal with a wide range of queries in a dynamic environment in
a robust way, i.e., avoiding a bad performance for any particular query type. This is motivated
by the fact that modern data analytics utilizes a large number of ad-hoc queries to do exploratory
analysis. For example, in the context of building a robust partitioning scheme for ad-hoc query
workloads, Shanbhag et al. [SJM+17] found that after analyzing the first 80% of real-world
workload traces the remaining 20% still contained 57% completely new queries.

Even though robustness of query processing performance has received considerable interest,
there is a lack of unified metrics in this area [Gra11, GGKP12]. Our goal is a good perfor-
mance for queries with differing selectivities for path and value predicates. Towards this goal we
define the notion of complementary queries.

Definition A.8. (Complementary Query) Given a query Q with path selectivity ςP and value se-

lectivity ςV , there is a complementary query Q′ with path selectivity ς ′P = ςV and value selectivity

ς ′V = ςP

State-of-the-art CAS-indexes favor either path or value predicates. As a result they show a very
good performance for one type of query but run into problems for the complementary query.

Definition A.9. (Robustness) A CAS-index is robust if it optimizes the average performance

when evaluating a query Q and its complementary query Q′.

Example A.9. Figure A.4a shows the costs for a query Q and its complementary query Q′ for

different interleavings in terms of the number of visited nodes during the search. We assume

parameters o = 10 and h = 12 for the search structure. In our dynamic interleaving IDY the

discriminative bytes are perfectly alternating. IPV stands for path-value concatenation with

φi = P for 1 ≤ i ≤ 6 and φi = V for 7 ≤ i ≤ 12. IVP is a value-path concatenation (with an

A.5 Dynamic Interleaving 57

inverse φ compared to IPV). We also consider two additional permutations: I1 uses a vector

φ = (V,V,V,V,P,V,P,V,P,P,P,P) and I2 one equal to (V,V,V,P,P,V,P,V,V,P,P,P). They resem-

ble, e.g., the byte-wise interleaving that usually exhibits irregular alternation patterns with a

clustering of, respectively, discriminative path and value bytes. Figure A.4b shows the aver-

age costs and the standard deviation. The numbers demonstrate the robustness of our dynamic

interleaving: it clearly shows the best performance both in terms of average costs and lowest

standard deviation.

ςV=0.1
ςP=0.5

ς ′V=0.5
ς ′P=0.1

0

50

100

(a) Complementary Queries

C
os

t[
10

3
no

de
s]

Dynamic Interleaving IDY IPV IVP I1 I2

Avg. Std. Dev.

(b) Robustness

Figure A.4: Dynamic interleaving has a robust query performance.

In the previous example we showed empirically that a perfectly alternating interleaving exhibits
the best overall performance when evaluating complementary queries. In addition to this, we can
prove that this is always the case.

Theorem A.1. Consider a query Q with selectivities ςP and ςV and its complementary query

Q′ with selectivities ς ′P = ςV and ς ′V = ςP. There is no interleaving that on average per-

forms better than the dynamic interleaving that has a perfectly alternating vector φDY, i.e.,

∀φ : Ĉ(o,h,φDY,ςP,ςV)+Ĉ(o,h,φDY,ς
′
P,ς
′
V)≤ Ĉ(o,h,φ ,ςP,ςV)+Ĉ(o,h,φ ,ς ′P,ς

′
V).

Proof. We begin with a brief outline of the proof. We show for a level l that the costs of query Q

and complementary query Q′ on level l is smallest with the dynamic interleaving. That is, for a
level l we show that ∏

l
i=1(o · ςφi)+∏

l
i=1(o · ς ′φi

) is smallest with the vector φDY = (V,P,V,P, . . .)

of our dynamic interleaving. Since this holds for any level l, it also holds for the sum of costs
over all levels l, 1≤ l ≤ h, and this proves the theorem.

We only look at search trees with a height h ≥ 2, as for h = 1 we do not actually have an
interleaving (and the costs are all the same). W.l.o.g., we assume that the first level of the search

58
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

tree always starts with a discriminative value byte, i.e., φ1 = V . Let us look at the cost for one
specific level l for query Q and its complementary query Q′. We distinguish two cases: l is even
or l is odd.

l is even: The cost for a perfectly alternating interleaving for Q for level l is equal to ol(ςV ·
ςP . . .ςV · ςP), while the cost for Q′ is equal to ol(ς ′V · ς ′P . . .ς ′V · ς ′P), which is equal to ol(ςP ·
ςV . . .ςP · ςV). This is the same cost as for Q, so adding the two costs gives us 2olς

l/2

V ς
l/2

P

For a non-perfectly alternating interleaving with the same number of ςV and ςP multiplicands
up to level l we have the same cost as for our dynamic interleaving, i.e., 2olς

l/2

V ς
l/2

P . Now let
us assume that the number of ςV and ςP multiplicands is different for level l (there must be at
least one such level l). Assume that for Q we have r multiplicands of type ςV and s multipli-
cands of type ςP, with r+ s = l and, w.l.o.g., r > s. This gives us olς s

V ς s
Pς

r−s
V + olς s

V ς s
Pς

r−s
P =

olς s
V ς s

P(ς
r−s
V + ς

r−s
P) for the cost.

We have to show that 2olς
l/2

V ς
l/2

P ≤ olς s
V ς s

P(ς
r−s
V +ς

r−s
P). As all values are greater than zero, this is

equivalent to 2ς
l/2−s
V ς

l/2−s
P ≤ ς

r−s
V +ς

r−s
P . The right-hand side can be reformulated: ς

r−s
V +ς

r−s
P =

ς
l−2s
V + ς

l−2s
P = ς

l/2−s
V ς

l/2−s
V + ς

l/2−s
P ς

l/2−s
P . Setting a = ς

l/2−s
V and b = ς

l/2−s
P , this boils down to

showing 2ab≤ a2 +b2⇔ 0≤ (a−b)2, which is always true.

l is odd: W.l.o.g. we assume that for computing the cost for a perfectly alternating interleaving
for Q, there are dl/2e multiplicands of type ςV and bl/2c multiplicands of type ςP. This results in
olς
bl/2c
V ς

bl/2c
P (ςV + ςP) for the sum of costs for Q and Q′.

For a non-perfectly alternating interleaving, we again have olς s
V ς s

P(ς
r−s
V + ς

r−s
P) with r + s = l

and r > s, which can be reformulated to olς s
V ς s

P(ς
bl/2c−s
V ς

bl/2c−s
V ςV + ς

bl/2c−s
P ς

bl/2c−s
P ςP).

What is left to prove is olς
bl/2c
V ς

bl/2c
P (ςV + ςP) ≤ olς s

V ς s
P(ς
bl/2c−s
V ς

bl/2c−s
V ςV + ς

bl/2c−s
P ς

bl/2c−s
P ςP),

which is equivalent to ς
bl/2c−s
V ς

bl/2c−s
P (ςV + ςP) ≤ ς

bl/2c−s
V ς

bl/2c−s
V ςV + ς

bl/2c−s
P ς

bl/2c−s
P ςP. Substi-

tuting a = ςV , b = ςP, and x = bl/2c− s, this means showing that axbx(a+b)≤ a2x+1 +b2x+1⇔
0 ≤ a2x+1 + b2x+1− axbx(a+ b). Factorizing this polynomial gives us (ax− bx)(ax+1− bx+1)

or (bx− ax)(bx+1− ax+1). We look at (ax− bx)(ax+1− bx+1), the argument for the other fac-
torization follows along the same lines. This term can only become negative if one factor is
negative and the other is positive. Let us first look at the case a < b: since 0 ≤ a,b ≤ 1, we can
immediately follow that ax < bx and ax+1 < bx+1, i.e., both factors are negative. Analogously,
from a > b (and 0≤ a,b≤ 1) immediately follows ax > bx and ax+1 > bx+1, i.e., both factors are
positive.

A.6 RCAS Index 59

Note that in practice the search structure is not a complete tree and the fraction ςP and ςV of
children that are traversed at each node is not constant. In Section A.7.4 we experimentally
evaluate the cost model on real-world datasets. We show that the estimated cost and the true cost
of a query are off by a factor of two, on average. This is a good estimate for the cost of a query.

A.6 RCAS Index

We propose the Robust Content-And-Structure (RCAS) index to efficiently query the content
and structure of hierarchical data. The RCAS index uses our dynamic interleaving to integrate
the paths and values of composite keys in a trie-based index.

A.6.1 Trie-Based Structure of RCAS

The RCAS index is a trie data-structure that efficiently supports CAS queries with range and pre-
fix searches. Each node n in the RCAS index includes a dimension n.D, path substring n.sP, and
value substring n.sV that correspond to the fields t.D, t.sP and t.sV in the dynamic interleaving of
a key (see Definition A.7). The substrings n.sP and n.sV are variable-length strings. Dimension
n.D is P or V for inner nodes and ⊥ for leaf nodes. Leaf nodes additionally store a set of refer-
ences ri to nodes in the database, denoted n.refs. Each dynamically interleaved key corresponds
to a root-to-leaf path in the RCAS index.

Definition A.10. (RCAS Index) Let K be a set of composite keys and let R be a tree. Tree R is

the RCAS index for K iff the following conditions are satisfied.

1. IDY(k,K) = (t1, . . . , tm) is the dynamic interleaving of a key k ∈ K iff there is a root-to-leaf

path (n1, . . . ,nm) in R such that ti.sP = ni.sP, ti.sV = ni.sV , and ti.D = ni.D for 1≤ i≤ m.

2. R does not include duplicate siblings, i.e., no two sibling nodes n and n′, n 6= n′, in R have

the same values for sP, sV , and D, respectively.

Example A.10. Figure A.5 shows the RCAS index for the composite keys K1..7. We use blue

and red colors for bytes from the path and value, respectively. The discriminative bytes are high-

lighted in bold. The dynamic interleaving IDY(k6,K
1..7) = (t1, t2, t3, t4) from Table A.4 is mapped

to the path (n1,n2,n4,n7) in the RCAS index. For key k2, the first two tuples of IDY(k2,K
1..7) are

also mapped to n1 and n2, while the third tuple is mapped to n3.

60
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

n1
(00,/bom/item/ca,V)

n2
(00,r,P)

n3
(abiner$,00F1,⊥)

{r2}

n4
(/b,ε,V)

n5
(0A8C,umper$,⊥)

{r7}

n6
(0B4A,elt$,⊥)

{r5}

n7
(0CC2,rake$,⊥)

{r6}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

Figure A.5: The RCAS index for the composite keys K1..7.

A.6.2 Physical Node Layout

Figure A.6 shows the physical structure of an inner node. The header field contains meta infor-
mation, such as the number of children. Fields sP and sV (explained above) are implemented as
variable-length byte vectors (C++’s std::vector<uint8_t>). Dimension D (P or V , or ⊥
if the node is a leaf) is the dimension in which the node partitions the data. The remaining space
of an inner node (gray-colored in Figure A.6) is reserved for child pointers. Since ψ partitions
at the granularity of bytes, each node can have at most 256 children, one for each possible value
of a discriminative byte from 0x00 to 0xFF (or their corresponding ASCII characters in Figure
A.5). For each possible value b there is a pointer to the subtree whose keys all have value b for
the discriminative byte of dimension D. Typically, many of the 256 pointers are NULL. There-
fore, we implement our trie as an Adaptive Radix Tree (ART) [LKN13], which defines four node
types with a physical fanout of 4, 16, 48, and 256 child pointers, respectively. Nodes are resized
to adapt to the actual fanout of a node. Figure A.6 illustrates the node type with an array of 256
child pointers. For the remaining node types we refer to Leis et al. [LKN13].

header sP sV D 00 01 02 FD FE FF

Figure A.6: Structure of an inner node with 256 pointers.

The structure of a leaf node is similar to that shown in Figure A.6, except that instead of child
pointers the leaf nodes have a variable-length vector with references to nodes in the database.

A.6 RCAS Index 61

A.6.3 Bulk-Loading RCAS

This section gives an efficient bulk-loading algorithm for RCAS that is linear in the number of
composite keys |K|. It simultaneously computes the dynamic interleaving of all keys in K. We
implement a partition K as a linked list of pairs (k,r), where r is a reference to a database node
with path k.P and value k.V . In our implementation the keys in K need not be unique. There
can be pairs (k,ri) and (k,r j) that have the same key but have different references ri 6= r j. This
is the case if there are different nodes in the indexed database that have the same path and value
(thus the same key). A partitioning M = ψ(K,D) is implemented as an array of length 28 with
references to (possibly empty) partitions K. The array indexes 0x00 to 0xFF are the values of
the discriminative byte.

Example A.11. Figure A.7a shows the linked list for set K1..7 from our running example. Two

nodes, pointed to by r3 and r′3, have the same key k3. They correspond to the batteries in Figure

A.1 that have the same path and value. Figure A.7b shows the partitioning ψ(K1..7,V) for our

running example. Three partitions exist with values 0x00, 0x01, and 0x03 for the discrimina-

tive value byte.

K1..7 : k1, r1 k2, r2 k3, r3 k3, r
′
3 k7, r7· · ·

(a) Partition K1..7 is represented as a list of (k,r) pairs.

0x00
0x01
0x02
0x03

0xFF

...
...

k2, r2 k5, r5 k6, r6 k7, r7

k1, r1

k3, r3 k3, r
′
3 k4, r4

M :

(b) The partitioning M= ψ(K1..7,V) is an array with 28 partitions.

Figure A.7: Data structures used in Algorithm A.3.

Algorithm A.1 determines the discriminative byte for a partition K. Note that dsc_inc looks
for the discriminative byte starting from position g, where g is a lower bound for dsc(K,D) as
per Lemma A.1. Also, looping through the bytes of the first key of K is correct even if there
are shorter keys in K. Since we use prefix-free keys, any shorter keys differ at some position,
terminating the loop correctly.

62
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

Algorithm A.1: dsc_inc(K,D,g)
1 Let (ki,ri) be the first key in K;
2 while g≤ len(ki.D) do
3 for (k j,r j) ∈ K do
4 if k j.D[g] 6= ki.D[g] then return g;

5 g++;

6 return g

Algorithm A.2 illustrates the computation of the ψ-partitioning M = ψ(K,D,g). We pass the
position g of the discriminative byte for dimension D as an argument to ψ . The discriminative
byte determines the partition to which a key belongs.

Algorithm A.2: ψ(K,D,g)
1 Let M be an array of 28 empty lists;
2 for (ki,ri) ∈ K do
3 Move (ki,ri) from partition K to partition M[ki.D[g]];

4 return M

Algorithm A.3 recursively ψ-partitions K and alternates between the path and value dimensions.
In each call of BulkLoadRCAS one new node n is added to the index. The algorithm takes four
parameters: (a) partition K, (b) dimension D∈ {P,V} by which K is partitioned, and the positions
of the previous discriminative (c) path byte gP and (d) value byte gV . For the first call, when no
previous discriminative path and value bytes exist, we set gP = gV = 1. BulkLoadRCAS(K,V,1,1)
returns a pointer to the root node of the new RCAS index. We start by creating a new node n

(line 1) and determining the discriminative path and value bytes g′P and g′V of K (lines 3-4).
Lemma A.1 guarantees that the previous discriminative bytes gP and gV are valid lower bounds
for g′P and g′V , respectively. Next, we determine the current node’s substrings sP and sV in lines
5-6 (see Definition A.7). In lines 7-10 we check for the base case of the recursion, which occurs
when all discriminative bytes are exhausted and K cannot be partitioned further. In this case, all
remaining pairs (k,r) ∈ K have the same key k. Leaf node n contains the references to nodes in
the database with this particular key k. In lines 11 we check if K can be partitioned in dimension
D. If this is not the case, since all keys have the same value in dimension D, we ψ-partition K in
the alternate dimension D. Finally, in lines 14-16 we iterate over all non-empty partitions in M

and recursively call the algorithm for each partition M[b], alternating dimension D in round-robin
fashion.

A.6 RCAS Index 63

Algorithm A.3: BulkLoadRCAS(K, D, gP, gV)
1 Let n be a new RCAS node;
2 Let (ki,ri) be the first key in K;
3 g′P← dsc_inc(K,P,gP);
4 g′V ← dsc_inc(K,V,gV);
5 n.sP← ki.P[gP,g′P−1];
6 n.sV ← ki.V [gV ,g′V −1];
7 if g′P > len(ki.P)∧g′V > len(ki.V) then /* n is a leaf */
8 n.D←⊥;
9 for (k j,r j) ∈ K do append r j to n.refs ;

10 return n;

11 if g′D > len(ki.D) then D← D ;
12 n.D← D;
13 M← ψ(K,D,g′D);
14 for b← 0x00 to 0xFF do
15 if partition M[b] is not empty then
16 n.children[b]← BulkLoadRCAS(M[b],D,g′P,g

′
V);

17 return n

Theorem A.2. Let K be a set of composite keys and let l = maxk∈K{len(k.P)+ len(k.V)} be the

length of the longest key. The time complexity of Algorithm A.3 is O(l · |K|).

Proof. We split the computations performed in function BulkLoadRCAS in Algorithm A.3 into
two groups. The first group includes the computations of the discriminative bytes across all recur-
sive invocations of BulkLoadRCAS (lines 1–12). The second group consists of the ψ-partitioning
(line 13) across all recursive invocations of BulkLoadRCAS.

Group 1: BulkLoadRCAS exploits the monotonicity of the discriminative bytes (Lemma A.1) and
passes the lower bound g to function dsc_inc(K,D,g). As a result, we scan each byte of k.P and
k.V only once for each k in K to determine the discriminative bytes. This amounts to one full
scan over all bytes of all keys in K across all invocations of BulkLoadRCAS. The complexity of
this group is O(∑k∈K(len(k.P)+ len(k.V))) = O(l · |K|).

Group 2: Given the position g of the discriminative byte computed earlier, ψ(K,D,g) must
only look at the value of this byte in dimension D of each key (k,r) ∈ K and append (k,r) to
the proper partition M[k.D[g]] in constant time. Thus, a single invocation of ψ(K,D) can be
performed in O(|K|) time. The partitioning ψ(K,D) is disjoint and complete (see Definition
A.5), i.e., |K| = ∑Ki∈ψ(K,D) |Ki|. Therefore, on each level of the RCAS index at most |K| keys

64
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

need to be partitioned, with a cost of O(|K|). In the worst case, the height of the RCAS index is
l, in which case every single path and value byte of the longest key is discriminative. Therefore,
the cost of partitioning K across all levels of the index is O(l · |K|).

Although we partition K recursively for every discriminative byte, the partitions become smaller
and smaller and on each level add up to at most |K| keys. Thus, the costs of the operations in
group 1 and group 2 add up to O(2 · l · |K|) = O(l · |K|).

The factor l in the complexity of Algorithm A.3 is typically much smaller than len(k.P) +

len(k.V) of the longest key k. For instance, assuming a combined length of just six bytes would
already give us around 280 trillion potentially different keys. So, we would need a huge number
of keys for every byte to become a discriminative byte on each recursion level.

A.6.4 Querying RCAS

Algorithm A.4 shows the pseudocode for evaluating a CAS query on an RCAS index. The
function CasQuery gets called with the current node n (initially the root node of the index), a path
predicate consisting of a query path q, and a range [vl,vh] for the value predicate. Furthermore,
we need two buffers buffP and buffV (initially empty) that hold, respectively, all path and
value bytes from the root to the current node n. Finally, we require state information s to evaluate
the path and value predicates (we provide details as we go along) and an answer set W to collect
the results.2

Algorithm A.4: CasQuery(n,q, [vl,vh],buffV ,buffP,s,W)

1 UpdateBuffers(n,buffV ,buffP)
2 matchV ← MatchValue(buffV ,vl,vh,s,n)
3 matchP← MatchPath(buffP,q,s,n)
4 if matchV = MATCH and matchP = MATCH then
5 Collect(n,W)
6 else if matchV 6= MISMATCH and matchP 6= MISMATCH then
7 for each matching child c in n do
8 s′← Update(s)
9 CasQuery(c,q, [vl,vh],buffV ,buffP,s′,W)

2The parameters n, W , q, and [vl ,vh] are call-by-reference, the parameters buffV , buffP, and s are call-by-
value.

A.6 RCAS Index 65

First, we update the buffers buffV and buffP, adding the information in the fields sV and sP of
the current node n (line 1). Next, we match the query predicates to the current node. Matching
values (line 2) works differently to matching paths (line 3), so we look at the two cases separately.

To match the current (partial) value buffV against the value range [vl,vh], their byte strings must
be binary comparable (for a detailed definition of binary-comparability see [LKN13]). Function
MatchValue proceeds as follows. We compute the longest common prefix between buffV

and vl and between buffV and vh. We denote the position of the first byte for which buffV

and vl differ by lo and the position of the first byte for which buffV and vh differ by hi. If
buffV [lo] < vl[lo], we know that the node’s value lies outside of the range and we return
MISMATCH. Similarly, if buffV [hi]> vh[hi], the node’s value lies outside of the upper bound
and we return MISMATCH as well. If n is a leaf node and vl ≤ buffV ≤ vh, we return MATCH. If
n is not a leaf node and vl[lo]< buffV [lo] and buffV [hi]< vh[hi], we know that all values
in the subtree rooted at n match and we also return MATCH. In all other cases we cannot make
a decision yet and return INCOMPLETE. The values of lo and hi are kept in the state to avoid
recomputing the longest common prefix from scratch for each node. Instead we can resume the
search from the previous values of lo and hi.

Function MatchPath matches the query path q against the current path prefix buffP. It sup-
ports the wildcard symbol * and the descendant-or-self axis // that match any child and descen-
dant node, respectively. As long as we do not encounter any wildcards in the query path q, we
directly compare (a prefix of) q with the current content of buffP byte by byte. As soon as a
byte does not match, we return MISMATCH. If we are able to successfully match the complete
query path q against a complete path in buffP (both terminated by $), we return MATCH. Other-
wise, we need to continue and return INCOMPLETE. When we encounter a wildcard * in q, we
match it successfully to the corresponding label in buffP and continue with the next label. A
wildcard * itself will not cause a mismatch (unless we try to match it against the terminator $),
so we either return MATCH if it is the final label in q and buffP or INCOMPLETE. Matching the
descendant-axis // is more complicated. We note the current position where we are in buffP

and continue matching the label after // in q. If at any point we find a mismatch, we backtrack
to the next path separator after the noted position, thus skipping a label in buffP and restarting
the search from there. Once buffP contains a complete path, we can make a decision between
MATCH or MISMATCH.

The algorithm continues by checking the outcomes of the value and path matching (lines 4 and
6). If both predicates match, we descend the subtree and collect all references (line 5 and function

66
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

Collect in Algorithm A.5). If at least one of the outcomes is MISMATCH, we immediately stop
the search in the current node, otherwise we continue recursively with the matching children of
n (lines 7–9). Finding the matching children depends on the dimension n.D of n and follows the
same logic as described above for MatchValue and MatchPath. If node n.D = P and we
have seen a descendant axis in the query path, all children of the current node match.

Algorithm A.5: Collect(n,W)

1 if n is a leaf then
2 add references r in n.refs to W
3 else
4 for each child c in n do
5 Collect(c,W)

Example A.12. We consider an example CAS query with path q = /bom/item//battery$

and a value range from vl = 105 = 000186A0 to vh = 5 ·105 = 0007A120. We execute the

query on the index depicted in Figure A.5.

• Starting at the root node n1, we load 00 and /bom/item/ca into buffV and buffP,

respectively. Function MatchValue matches 00 and returns INCOMPLETE. MatchPath

also returns INCOMPLETE: even though it matches /bom/item, the partial label ca does

not match battery, so ca is skipped by the descendant axis. Since both functions return

INCOMPLETE, we have to traverse all matching children. Since n1 is a value node (n1.D =

V), we look for all matching children whose discriminative value byte is between 01 and 07.

Nodes n8 and n9 satisfy this condition.

• Node n8 is a leaf. buffP and buffV are updated and contain complete paths and values.

Byte 01 matches, but byte buffV [3] = 0E < 86 = vl[3]. Thus, MatchValue returns a

MISMATCH. So does MatchPath. The search discards n8.

• Next we look at node n9. We find that vl[2] < buffV [2] < vh[2], thus all values of n9’s de-

scendants are within the bounds vl and vh, and MatchValue returns MATCH. MatchPath

skips the next bytes r/ due to the descendant axis and resumes matching from there. After

skipping r/, it returns MATCH, as battery$ matches the query path until its end. Both

predicates match, invoking Collect on n9, which traverses n9’s descendants n10 and n11 and

adds references r3, r′3, and r4 to W.

A.7 Experimental Evaluation 67

Twig queries [BKH+17] with predicates on multiple attributes are broken into smaller CAS
queries. Each root-to-leaf branch of the twig query is evaluated independently on an appropriate
RCAS index and the resulting sets W are joined to produce the final result. The join requires that
the references r ∈W contain structural information about a node’s position in the tree (e.g., an
OrdPath [OOP+04] node-labeling scheme). A query optimizer can use our cost model to choose
which RCAS indexes are used in a query plan.

A.7 Experimental Evaluation

A.7.1 Setup and Datasets

We use a virtual Ubuntu 18.04 server with eight cores and 64GB of main memory. All algorithms
are implemented in C++ by the same author and were compiled with clang 6.0.0 using -O3. Each
reported runtime measurement is the average of 100 runs. All indexes are kept in main memory.
The code3 and the datasets4 used in the experimental evaluation can be found online.

Datasets. We use three datasets, the ServerFarm dataset that we collected ourselves, a product
catalog with products from Amazon [HM16], and the synthetic XMark [SWK+02] dataset at a
scale factor of 500. The ServerFarm dataset mirrors the file system of 100 Linux servers. For each
server we installed a default set of packages and randomly picked a subset of optional packages.
In total there are 21 million files. For each file we record the file’s full path, size, various times-
tamps (e.g., a file’s change time ctime), file type, extension etc. The Amazon dataset [HM16]
contains products that are hierarchically categorized. For each experiment we index the paths in
a dataset along with one of its attributes. We use the notation $dataset:$attribute to in-
dicate which attribute in a dataset is indexed. E.g., ServerFarm:size contains the path of each file
in the ServerFarm dataset along with its size. The datasets do not have to fit into main memory,
but we assume that the indexed keys fit into main memory. Table A.5 shows a summary of the
datasets.

3https://github.com/k13n/rcas
4https://doi.org/10.5281/zenodo.3739263

https://github.com/k13n/rcas
https://doi.org/10.5281/zenodo.3739263

68
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

Table A.5: Dataset Statistics

Dataset Size Attribute No. of Keys Unique Keys Size of Keys

ServerFarm 3.0GB size 21’291’019 9’345’668 1.7GB
XMark 58.9GB category 60’272’422 1’506’408 3.3GB

Amazon 10.5GB price 6’707’397 6’461’587 0.8GB

Compared Approaches. We compare our RCAS index based on dynamic interleaving with the
following approaches that can deal with variable-length keys. The path-value (PV) and value-
path (VP) concatenations are the two possible c-order curves [NY17]. The next approach, termed
ZO for z-order [Mor66, OM84], maps variable-length keys to a fixed length as proposed by
Markl [Mar99]. Each path label is mapped to a fixed length using a surrogate function. Since
paths can have a different number of labels, shorter paths are padded with empty labels to match
the number of labels in the longest path in the dataset. The resulting paths have a fixed length lP
and are interleaved with values of length lV such that dlV/lPe value bytes are followed by dlP/lVe
path bytes. The label-wise interleaving (LW) interleaves one byte of the value with one label of
the path. We utilize our RCAS index to identify the dimension of every byte of the variable-length
interleaved keys. The same underlying data-structure is also used to store the keys generated by
PV, VP, and ZO. Finally, we compare RCAS against the CAS index in [MHSB15] that builds a
structural summary (DataGuide [GW97]) and a value index (B+ tree5) and joins them to answer
CAS queries. We term this approach XML as it was proposed for XML databases.

A.7.2 Impact of Datasets on RCAS’s Structure

In Figure A.8 we show how the shape (depth and width) of the RCAS index adapts to the datasets.
Figure A.8a shows the distribution of the node depths in the RCAS index for the ServerFarm:size
dataset. Because of the trie-based structure not every root-to-leaf path in RCAS has the same
length (see also Figure A.5). The deepest nodes occur on level 33, but most nodes occur on
levels 10 to 15 with an average node depth of 13.2. This is due to the different lengths of the
paths in a file system. Figure A.8b shows the number of nodes for each node type. Recall from
Section A.6.2 that RCAS, like ART [LKN13], uses inner nodes with a physical fanout of 4, 16,
48, and 256 pointers depending on the actual fanout of a node to reduce the space consumption.

5We use the tlx B+ tree (https://github.com/tlx/tlx), used also by [BZP+18, ZLL+18] for com-
parisons.

https://github.com/tlx/tlx

A.7 Experimental Evaluation 69

The type of a node n and its dimension n.D are related. Path nodes typically have a smaller fanout
than value nodes. This is to be expected, since paths only contain printable ASCII characters (of
which there are about 100), while values span the entire available byte spectrum. Therefore, the
most frequent node type for path nodes is type 4, while for value nodes it is type 256, see Figure
A.8b. Leaf nodes do not partition the data and thus their dimension is set to ⊥ according to
Definition A.7. The RCAS index on the ServerFarm:size dataset contains more path than value
nodes. This is because in this dataset there are about 9M unique paths as opposed to about 230k
unique values. Thus, the values contain fewer discriminative bytes than the paths and can be
better compressed by the trie structure.

ServerFarm:size XMark:category Amazon:price

Dimension:

0 10 20 30

0

0.5M

1M

1.5M

(a) Node Depth

N
o.

of
N

od
es

0 1 2 3 4 5 6

0

0.5M

1M

1.5M

(c) Node Depth

0 10 20 30

0

0.5M

1M

1.5M

(e) Node Depth

Leaf 4 16 48 256
101

104

107

(b) Node Type

N
o.

of
N

od
es

P V ⊥

Leaf 4 16 48 256
101

104

107

(d) Node Type

Leaf 4 16 48 256
101

104

107

(f) Node Type

ServerFarm:size XMark:category Amazon:price
Avgerage Depth 13.2 5.1 9.5

Size RCAS (GB) 1.5 0.6 1.2

Figure A.8: Structure of the RCAS index

Figures A.8c and A.8d show the same information for dataset XMark:category. The RCAS index
is more shallow since there are only 7 unique paths and ca. 390k unique values in a dataset of
60M keys. Thus the number of discriminative path and value bytes is low and the index less deep.
Nodes of type 256 are frequent (see Figure A.8d) because of the larger number of unique values.
While the XMark:category dataset contains 40M more keys than the ServerFarm:size dataset,
the RCAS index for the former contains 1.5M nodes as compared to the 14M nodes for the latter.

70
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

Table A.6: CAS queries with their result size and the number of keys that match the path,
respectively value predicate.

Query definitions
Dataset: ServerFarm:size

Q1 Q(/usr/include//,@size≥ 5000)
Q2 Q(/usr/include//,3000≤ @size≤ 4000)
Q3 Q(/usr/lib//,0≤ @size≤ 1000)
Q4 Q(/usr/share//Makefile,1000≤ @size≤ 2000)
Q5 Q(/usr/share/doc//README,4000≤ @size≤ 5000)
Q6 Q(/etc//,@size≥ 5000)

Dataset: XMark:category
Q7 Q(/site/people//interest,0≤ @category≤ 50000)
Q8 Q(/site/regions/africa//,0≤ @category≤ 50000)

Dataset: Amazon:price
Q9 Q(/CellPhones&Accessories//,10000≤ @price≤ 20000)
Q10 Q(/Clothing/Women/*/Sweaters//,7000≤ @price≤ 10000)

Query selectivities
Q Result size (σ) Matching paths (σP) Matching values (σV)

Dataset: ServerFarm:size
Q1 142253 (0.6%) 434564 (2.0%) 7015066 (32.9%)
Q2 46471 (0.2%) 434564 (2.0%) 1086141 (5.0%)
Q3 512497 (2.4%) 2277518 (10.6%) 8403809 (39.4%)
Q4 1193 (< 0.1%) 6408 (< 0.1%) 2494804 (11.7%)
Q5 521 (< 0.1%) 24698 (0.1%) 761513 (3.5%)
Q6 7292 (< 0.1%) 97758 (0.4%) 7015066 (32.9%)

Dataset: XMark:category
Q7 1910524 (3.1%) 19009723 (31.5%) 6066546 (10.0%)
Q8 104500 (0.1%) 1043247 (1.7%) 6066546 (10.0%)

Dataset: Amazon:price
Q9 2758 (< 0.1%) 291625 (4.3%) 324272 (4.8%)
Q10 239 (< 0.1%) 4654 (< 0.1%) 269936 (4.0%)

A.7 Experimental Evaluation 71

The RCAS index for the Amazon:price dataset has similar characteristics as the ServerFarm:size
dataset, see Figures A.8e and A.8f.

A.7.3 Robustness

Table A.6 shows a number of typical CAS queries with their path and value predicates. For ex-
ample, query Q4 looks for all Makefiles underneath /usr/share that have a file size between
1KB and 2KB. In Table A.6 we report the selectivity σ of each query as well as path selectivity
σP and value selectivity σV of the queries’ path and value predicates, respectively. The RCAS
index avoids large intermediate results that can be produced if an index prioritizes one dimen-
sion over the other, or if it independently evaluates and joins the results of the path and value
predicates. Query Q5, e.g., returns merely 521 matches, but its path and value predicates return
intermediate results that are orders of magnitudes larger.

Figures A.9a to A.9f show that RCAS consistently outperforms its competitors for queries Q1

to Q6 from Table A.6 on the ServerFarm:size dataset. On these six queries ZO and LW perform
similarly as PV, which is indicative for a high “puff-pastry effect” (see Section A.3) where one
dimension is prioritized over another. In the ServerFarm:size dataset ZO and LW prioritize the
path dimension. The reasons are twofold. The first reason is that the size attribute is stored
as a 64 bit integer since 32 bit integers cannot cope with file sizes above 232 ≈ 4.3GB. The file
sizes in the dataset are heavily skewed towards small files (few bytes or kilo-bytes) and thus have
many leading zero-bytes. Many of these most significant bytes do not partition the values. On
the other hand, the leading path bytes immediately partition the data: the second path byte is
discriminative since the top level of a file system contains folders like /usr, /etc, /var. As
a result, ZO and LW fail to interleave at discriminative bytes and these approaches degenerate
to the level of PV. The second reason is specific to ZO. To turn variable-length paths into fixed-
length strings, ZO maps path labels with a surrogate function and fills shorter paths with trailing
zero-bytes to match the length of the longest path (see Section A.7.1). We need 3 bytes per label
and the deepest path contains 21 labels, thus every path is mapped to a length of 63 bytes and
interleaved with the 8 bytes of the values. Many paths in the dataset are shorter than the deepest
path and have many trailing zero-bytes. As explained earlier the values (64-bit integers) have
many leading zero-bytes, thus the interleaved ZO string orders the relevant path bytes before the
relevant value bytes, further pushing ZO towards PV. Let us look more closely at the results of
query Q1 in Figure A.9a. VP’s runtime suffers because of the high value selectivity σV . XML

72
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

ServerFarm:size ServerFarm:size ServerFarm:size

100
101
102
103

(a) Query Q1

R
un

tim
e

[m
s]

RCAS ZO LW PV VP XML

100
101
102
103

(b) Query Q2

100
101
102
103

(c) Query Q3

100
101
102
103

(d) Query Q4

R
un

tim
e

[m
s]

100
101
102
103

(e) Query Q5

100
101
102
103

(f) Query Q6

XMark:category

100
101
102
103

(g) Query Q7

R
un

tim
e

[m
s]

100
101
102
103

(h) Query Q8

R
un

tim
e

[m
s]

Amazon:price

100
101
102
103

(i) Query Q9

100
101
102
103

(j) Query Q10

Summary

100
101
102
103

(k) Average (Q1, . . . ,Q10)

100
101
102
103

(l) Std. Dev (Q1, . . . ,Q10)

Figure A.9: (a)–(f): Runtime measurements for queries Q1 to Q6 from Table A.6 on dataset
ServerFarm:size. (g)–(h) queries Q7 to Q8 on XMark:category. (i)–(j) queries Q9 and Q10 on
Amazon:price. (k)–(l): Average and standard deviation for queries Q1 to Q10.

performs badly because the intermediate result sizes are one to two orders of magnitude larger
than the final result size. RCAS with our dynamic interleaving is unaffected by the puff-pastry
effect in ZO, LW, and PV because it only interleaves at discriminative bytes. In RCAS the value
selectivity (32%) is counter-balanced by the low path selectivity (2%), thus avoiding VP’s pitfall.
Lastly, RCAS does not materialize large intermediate results as XML does.

Queries Q1 and Q2 have the same path predicate, but Q2’s value selectivity σV is considerably
lower. The query performance of ZO, LW, and PV is unaffected by the lower σV since σP

remains unchanged. This is further evidence that ZO and LW prioritize the paths, just like PV.
The runtime of VP and XML benefit the most if the value selectivity σV drops. RCAS’s runtime
still halves with respect to Q1 and again shows the best overall runtime.

A.7 Experimental Evaluation 73

Query Q3 has the largest individual path and value selectivities, and therefore produces the largest
intermediate results. This is the reason for its high query runtime. RCAS has the best perfor-
mance since the final result size is an order of magnitude smaller than for the individual path and
value predicates.

Queries Q4 and Q5 look for particular files (Makefile, README) within large hierarchies.
Their low path selectivity σP should favor ZO, LW, and PV, but this is not the case. Once
Algorithm A.4 encounters the descendant axis during query processing, it needs to recursively
traverse all children of path nodes (n.D=P). Fortunately, value nodes (n.D=V) can still be used
to prune entire subtrees. Therefore, approaches that alternate between discriminative path and
values bytes, like RCAS, can still effectively narrow down the search, even though the descendant
axis covers large parts of the index. Instead, approaches that prioritize the paths (PV, ZO, LW)
perform badly as they cannot prune subtrees high up during query processing.

Query Q6 has a very low path selectivity σP, but its value selectivity σV is high. This is the
worst case for VP as it can evaluate the path predicate only after traversing already a large part
of the index. This query favors PV, LW, and ZO. Nevertheless, RCAS outperforms all other
approaches.

The results for queries Q7 and Q8 on the XMark:category dataset are shown in Figures A.9g and
A.9h. The gaps between the various approaches is smaller since the number of unique paths is
small (see Section A.7.2). As a result, the matching paths are quickly found by ZO, LW, and PV.
RCAS answers Q8 in 4ms in comparison to 2ms for ZO and PV. VP performs worse on query
Q8 because of Q8’s low σP and high σV .

Query Q9 on dataset Amazon:price searches for all phones and their accessories priced between
$100 and $200. Selectivities σP and σV are roughly 4.5% whereas the total selectivity is two
orders of magnitude smaller. Figure A.9i confirms that RCAS is the most efficient approach.
Query Q10 looks for all women’s sweaters priced between $70 and $100. Sweaters exist for
various child-categories of category Women, e.g., Clothing, Maternity, etc. Query Q10

uses the wildcard * to match all of them.

Figures A.9k and A.9l show the average runtime and the standard deviation for queries Q1 to Q10.
RCAS is the most robust approach: it has the lowest average runtime and standard deviation.

74
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

A.7.4 Evaluation of Cost Model

This section uses the cost function Ĉ(o,h,φ ,ςP,ςV) from Section A.5.3 to estimate the cost of
answering a query with RCAS. We explain the required steps for query Q1 on dataset Server-
Farm:size (see Table A.6). First, we choose the alternating pattern of discriminative bytes in
RCAS’s dynamic interleaving by setting φ to (V,P,V,P, . . .). For determining h and o we con-
sider |K| unique keys. Since each leaf represents a key, there are oh = |K| leaves. We set h to
the average depth of a node in the RCAS index (truncated to the next lower integer) and fanout
o to h

√
|K|. For dataset ServerFarm:size we have |K| = 9.3M and h = 13 (see Table A.5 and

Figure A.8), thus o = 13
√

9.3M = 3.43. This is consistent with Figure A.8a that shows that the
most frequent node type in RCAS has a fanout of at most four. Next we look at parameters ςP

and ςV . In our cost model, a query traverses a constant fraction ςD of the children on each level
of dimension D, corresponding to a selectivity of σD = ςD · ςD · . . . = ςN

D over all N levels of
dimension D. N is the number of discriminative bytes in dimension D. Thus, if a CAS query has
a value selectivity of σV we set ςV = N

√
σV . The value selectivity of query Q1 is σV = 32.9%

(see Table A.6); the number of discriminative value bytes in φ is N = dh/2e= d13/2e= 7 (we use
the ceiling since we start partitioning by V in φ), thus ςV = 7

√
0.329 = 0.85. ςP is determined

likewise and yields ςP = b13/2c√0.02 = 0.52 for Q1.

We refine this cost model for path predicates containing the descendant axis // or the wildcard

* followed by further path steps. In such cases we use the path selectivity of the path predicate
up to the first descendant axis or wildcard. For example, for query Q4 with path predicate /us-
r/share//Makefile and σP = 0.03%, we use the path predicate /usr/share// with a
selectivity of σP = 44%. This is so because the low path selectivity of the original predicate is
not representative for the number of nodes that RCAS must traverse. As soon as RCAS hits a
descendant axis in the path predicate it can only use the value predicate to prune nodes during
the traversal (see Section A.6.4).

Table A.7: Estimated cost Ĉ and true cost C for queries Q1 to Q10.

Ĉ C E
Q1 105793 83190 1.27
Q2 19157 28943 1.51
Q3 542458 273824 1.98
Q4 710128 784068 1.10
Q5 111139 146124 1.31

Ĉ C E
Q6 9920 3062 3.24
Q7 34513 30365 1.14
Q8 18856 38247 2.03
Q9 20421 4219 4.84
Q10 17993 10698 1.68

A.7 Experimental Evaluation 75

In Table A.7 we compare the estimated cost Ĉ for the ten queries in Table A.6 with the true cost
of these queries in RCAS. In addition to the estimated cost Ĉ and the true cost C, we show the
factor E = max(Ĉ,C)/min(Ĉ,C) by which the estimate is off. On average the cost model and RCAS
are off by only a factor of two.

Figure A.10 illustrates that the default values we have chosen for the parameters of Ĉ yield near
optimal results in terms of minimizing the average error E for queries Q1 to Q10. On the x-axis,
we plot the deviation from the default value of a parameter. The values for o and h are spot on.
We overestimate the true path and value selectivities by a small margin; decreasing ∆ςP and ∆ςV

by 0.04 improves the error marginally.

−1 0 1
0
2
4
6
8

10

(a) ∆o

A
vg

.E
rr

or
E

−1 0 1
0
2
4
6
8

10

(b) ∆h

−0.1 0 0.1
0
2
4
6
8

10

(c) ∆ςP

−0.1 0 0.1
0
2
4
6
8

10

(d) ∆ςV

Figure A.10: Calibrating the cost model

A.7.5 Space Consumption and Scalability

Figure A.11 illustrates the space consumption of the indexes for our datasets. RCAS, ZO, LW,
PV, and VP all use the same underlying trie structure and have similar space requirements. The
XMark:category dataset can be compressed more effectively using tries because the number of
unique paths and values is low (see Section A.7.2) and common prefixes need to be stored only
once. The trie indexes on Amazon:price do not compress the data as well as on the other two
datasets since the lengthy titles of products do not share long common prefixes. The XML
index needs to maintain two structures, a DataGuide and a B+ tree. Consequently, its space
consumption is higher. In addition, prefixes are not compressed as effectively in a B+ tree as
they are in a trie.

In Figure A.12 we analyze the scalability of the indexes in terms of their space consumption
and bulk-loading time as we increase the number of (k,r) pairs to 100M. We scale the Server-
Farm:size dataset as needed to reach a certain number of (k,r) pairs. The space consumption
(Figure A.12a) and the index bulk-loading time (Figure A.12b) are linear in the number of keys.
The small drop for RCAS, ZO, LW, PV, and VP in Figure A.12a is due to their trie structure.

76
Chapter A. Dynamic Interleaving of Content and Structure for Robust Indexing of

Semi-Structured Hierarchical Data

0
1
2
3

(a) ServerFarm:size

Sp
ac

e
[G

B
]

RCAS ZO LW PV VP XML

0
1
2
3

(b) XMark:category
0
1
2
3

(c) Amazon:price

Figure A.11: Space consumption

These indexes compress the keys more efficiently when we scale the dataset from originally
21M keys to 100M keys (we do so by duplicating keys). They store the path k.P and value k.V

only once for pairs (k,ri) and (k,r j) with the same key k. Figure A.12b confirms that the time
complexity of Algorithm A.3 to bulk-load the RCAS index is linear in the number of keys (see
Lemma A.2). Bulk-loading RCAS is a factor of two slower than bulk-loading indexes for static
interleavings, but a factor of two faster than bulk-loading the XML index. While RCAS takes
longer to create the index it offers orders of magnitude better query performance as shown be-
fore. Figure A.12 shows that the RCAS index for 100M keys requires 2GB of memory and can
be bulk-loaded in less than 5 minutes.

104 106 108
0.1

10

1000

(a) No. of (k,r) pairs

Sp
ac

e
[M

B
]

RCAS ZO LW PV VP XML

104 106 108

0.001
0.1
10

1000

(b) No. of (k,r) pairs

R
un

tim
e

[s
ec

]

Figure A.12: Space consumption and bulk-loading time

A.7.6 Summary

We conclude with a summary of the key findings of our experimental evaluation. First, RCAS
shows the most robust query performance for a wide set of CAS queries with varying selectivi-
ties: it exhibits the most stable runtime in terms of average and standard deviation, outperform-
ing other state-of-the-art approaches by up to two orders of magnitude. Second, our cost model
yields a good estimate for the true cost of a CAS query on the RCAS index. Third, because of
the trie-based structure the RCAS index consumes less space than its competitors, requiring only

A.8 Conclusion and Outlook 77

a third of the space used by a B+ tree-based approach. The space consumption and bulk-loading
time are linear in the number of keys, allowing it to scale to a large number of keys.

A.8 Conclusion and Outlook

We propose the Robust Content-and-Structure (RCAS) index for semi-structured hierarchical
data, offering a well-balanced integration of paths and values in a single index. Our scheme
avoids prioritizing a particular dimension (paths or values), making the index robust against
queries with high individual selectivities producing large intermediate results and a small final
result. We achieve this by developing a novel dynamic interleaving scheme that exploits the prop-
erties of path and value attributes. Specifically, we interleave paths and values at their discrimi-

native bytes, which allows our index to adapt to a given data distribution. In addition to proving
important theoretical properties, such as the monotonicity of discriminative bytes and robust-
ness, we show in our experimental evaluation impressive gains: utilizing dynamic interleaving
our RCAS index outperforms state-of-the-art approaches by up to two order of magnitudes on
real-world and synthetic datasets.

Future work points into several directions. We plan to apply RCAS on the largest archive of
software source code, the Software Heritage Dataset [DCZ17, PSZ20]. On the technical side we
are working on supporting incremental insertions and deletions in the RCAS index. It would also
be interesting to explore a disk-based RCAS index based on a disk-based trie [AZ09]. Further,
we consider making path predicates more expressive by, e.g., allowing arbitrary regular expres-
sions as studied by Baeza-Yates et al. [BG96]. On the theoretical side it would be interesting to
investigate the length of the dynamic interleavings for different data distributions.

79

APPENDIX B

Inserting Keys into the Robust Content-and-Structure (RCAS) Index

Reprinted from:

K. Wellenzohn, L. Popovic, M. H. Böhlen, S. Helmer. “Inserting Keys into the Robust Content-
and-Structure (RCAS) Index”, in ADBIS, pages 121–135, 2021.
doi:10.1007/978-3-030-82472-3_10

https://dx.doi.org/10.1007/978-3-030-82472-3_10

80 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

Abstract

Semi-structured data is prevalent and typically stored in formats like XML and JSON. The most
common type of queries on such data are Content-and-Structure (CAS) queries, and a number of
CAS indexes have been developed to speed up these queries. The state-of-the-art is the RCAS
index, which properly interleaves content and structure, but does not support insertions of sin-
gle keys. We propose several insertion techniques that explore the trade-off between insertion
and query performance. Our exhaustive experimental evaluation shows that the techniques are
efficient and preserve RCAS’s good query performance.

B.1 Introduction

A large part of real-world data does not follow the rigid structure of tables found in rela-
tional database management systems (RDBMSs). Instead, a substantial amount of data is semi-
structured, e.g., annotated and marked-up data stored in formats such as XML and JSON. Since
mark-up elements can be nested, this leads to a hierarchical structure. A typical example of semi-
structured data are bills of materials (BOMs), which contain the specification of every component
required to manufacture end products. Figure B.1 shows an example of a hierarchical represen-
tation of three products, with their components organized under a node bom. Nodes in a BOM
can have attributes, e.g., in Figure B.1 attribute @weight denotes the weight of a component in
grams.

bom

item

car

brake

@weight
3266

bumper

@weight
2700

battery

@weight
250800

item

car

belt

@weight
2890

battery

@weight
250714

@capacity
80000

item

canoe

@weight
69200

carabiner

@weight
241

Figure B.1: Example of a bill of materials (BOM).

Semi-structured hierarchical data is usually queried via content-and-structure (CAS) queries
[MHSB15] that combine a value predicate on the content of some attribute and a path predi-
cate on the location of this attribute in the hierarchical structure. An example query for the BOM

B.2 Background 81

depicted in Figure B.1 that selects all car parts with a weight between 1000 and 3000 grams
has the form: Q (/bom/item/car//, [1000, 3000]), with “//” matching a node and all its
descendants. To speed up this type of query, the Robust Content-and-Structure (RCAS) index
has been proposed [WBH20]. RCAS is based on a new interleaving scheme, called dynamic
interleaving, that adapts to the distribution of the data and interleaves path and value dimension
at their discriminative bytes.

So far, the RCAS index supports bulk-loading but it cannot be updated incrementally. We present
efficient methods to insert new keys into RCAS without having to bulk-load the index again. We
make the following contributions:

• We develop two different strategies for inserting keys into an RCAS index: strict and lazy
restructuring.

• With the help of an auxiliary index, we mitigate the effects of having to restructure large
parts of the index during an insertion. We propose techniques to merge the auxiliary index
back into the main index if it grows too big.

• Extensive experiments demonstrate that combining lazy restructuring with the auxiliary
index provides the most efficient solution.

B.2 Background

RCAS is an in-memory index that stores composite keys k consisting of two components: a path
dimension P and a value dimension V that are accessed by k.P and k.V , respectively. An example
of a key (representing an entity from Figure B.1) is (/bom/item/car/bumper$, 00 00 0A
8C), where the blue part is the key’s path and the red part is the key’s value (in hexadecimal).
Table B.1 shows the keys of all entities from Figure B.1; the example key is k7.

The RCAS index interleaves the two-dimensional keys at their discriminative path and value
bytes. The discriminative byte dsc(K,D) of a set of keys K in a given dimension D is the position
of the first byte for which the keys differ. That is, the discriminative byte is the first byte after
the keys’ longest common prefix in dimension D. For example, the discriminative path byte
dsc(K1..7,P) of the set of keys K1..7 from Table B.1 is the 13th byte. All paths up to the 13th byte
share the prefix /bom/item/ca and for the 13th byte, key k1 has value n, while keys k2, . . . ,k7

82 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

have value r. The dynamic interleaving is obtained by interleaving the keys alternatingly at their
discriminative path and value bytes.

Table B.1: Set K1..7 = {k1, . . . ,k7} of composite keys.

Path Dimension P Value Dimension V
k1 /bom/item/canoe$ 69200 (00010E50)
k2 /bom/item/carabiner$ 241 (000000F1)
k3 /bom/item/car/battery$ 250714 (0003D35A)
k4 /bom/item/car/battery$ 250800 (0003D3B0)
k5 /bom/item/car/belt$ 2890 (00000B4A)
k6 /bom/item/car/brake$ 3266 (00000CC2)
k7 /bom/item/car/bumper$ 2700 (00000A8C)

1 3 5 7 9 11 13 15 17 19 21 23 1 2 3 4

The dynamic interleaving adapts to the data: when interleaving at a discriminative byte, we
divide keys into different partitions. If we instead use a byte that is part of the common prefix,
all keys will end up in the same partition, which means that during a search we cannot filter keys
efficiently. Our scheme guarantees that in each interleaving step we narrow down the set of keys
to a smaller set of keys that have the same value for the discriminative byte. Eventually, the set
is narrowed down to a single key and its dynamic interleaving is complete. Switching between
discriminative path and value bytes gives us a robust query performance since it allows us to
evaluate the path and value predicates of CAS queries step by step in round-robin fashion.

We embed the dynamically interleaved keys K1..7 from Table B.1 into a trie data structure as
shown in Figure B.2, building the final RCAS index. Each node n stores a path substring sP

(blue), a value substring sV (red), and a dimension D. sP and sV contain the longest common
prefixes in the respective dimensions of all the nodes in the subtree rooted at n. Dimension D

determines the dimension that is used for partitioning the keys contained in the subtree rooted
in n; D is either P or V for an inner node and ⊥ for a leaf node. Leaf nodes store a set of
references that point to nodes in the hierarchical document. In Figure B.2 node n9 stores the
longest common prefixes sP = r/battery$ and sV = 03D3. n9.D = V , which means the
children of n9 are distinguished according to their value at the discriminative value byte (e.g., 5A
for n10 and B0 for n11). For more details on dynamic interleaving, building an RCAS index, and
querying it efficiently, see [WBH20]. Here we focus on inserting new keys into RCAS indexes.

B.3 Insertion of New Keys 83

n1
(00,/bom/item/ca,V)

n2
(00,r,P)

n3
(abiner$,00F1,⊥)

{r2}

n4
(/b,ε,V)

n5
(0A8C,umper$,⊥)

{r7}

n6
(0B4A,elt$,⊥)

{r5}

n7
(0CC2,rake$,⊥)

{r6}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

Figure B.2: The RCAS index for the composite keys K1..7.

B.3 Insertion of New Keys

We distinguish three insertion cases for which the effort varies greatly:

Case 1. The inserted key is a duplicate, i.e., there is already an entry in the index for the same
key. Thus, we add a reference to the set of references in the appropriate leaf node. For instance, if
we insert a new key k′3 that is identical to k3, we only add the reference r′3 to the set of references
of node n10 (see Figure B.2).

Case 2. The key to be inserted deviates from the keys in the index, but it does so at the very end
of the trie structure. In this case, we add one new leaf node and a branch just above the leaf level.
In Figure B.3 we illustrate RCAS after inserting key (/bom/item/car/bench$, 00 00 19
64) with reference r9. We create a new leaf node n12 and add a new branch to its parent node n4.

Case 3. This is the most complex case. If the path and/or the value of the new key results in
a mismatch with the path and/or value of a node in the index, the index must be restructured.
This is because the position of a discriminative byte shifts, making it necessary to recompute
the dynamic interleaving of a potentially substantial number of keys in the index. For example,
if we want to insert key (/bom/item/cassette$, 0000AB12) with reference r10, due to
its value 00 at the discriminative value byte (the second byte), it has to be inserted into the
subtree rooted at node n2 (see Figure B.3). Note that the discriminative path byte has decreased
by one position since the first s in cassette differs from r in the path substring n2.sP. This

84 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

n1
(00,/bom/item/ca,V)

n2
(00,r,P)

n3
(abiner$,00F1,⊥)

{r2}

n4
(/b,ε,V)

n5
(0A8C,umper$,⊥)

{r7}

n6
(0B4A,elt$,⊥)

{r5}

n7
(0CC2,rake$,⊥)

{r6, r8}

n12
(1964,ench$,⊥)

{r9}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

Figure B.3: Inserting a new key just above leaf level.

invalidates the current dynamic interleaving of the keys in the subtree rooted at n2. Consequently,
the whole subtree has to be restructured. As this is the most complicated case and there is no
straightforward answer on how to handle it, we look at it in Section B.4.

Insertion Algorithm. Algorithm B.1 inserts a key into RCAS. The input parameters are the root
node n of the trie, the key k to insert, and a reference r to the indexed element in the hierarchical
document. The algorithm descends to the insertion point of k in the trie. Starting from the root
node n, we compare the current node’s path and value substring with the relevant part in k’s path
and value (lines 2–3). As long as these strings coincide we proceed. Depending on the current
node’s dimension, we follow the edge that contains k’s next path or value byte. The descent stops
once we reach one of the three cases from above. In Case 1, we reached a leaf node and add r

to the current node’s set of references (lines 4–6). In Case 2, we could not find the next node
to traverse, thus we create it (lines 13–19). The new leaf’s substrings sP and sV are set to the
still unmatched bytes in k.P and k.V , respectively, and its dimension is set to ⊥. In Case 3 we
discovered a mismatch between k and the current node’s substrings (lines 7–10).

B.4 Index Restructuring during Insertion

B.4 Index Restructuring during Insertion 85

Algorithm B.1: Insert(n, k, r)
1 while true do
2 Compare n.sP to relevant part of k.P
3 Compare n.sV to relevant part of k.V
4 if k.P and k.V have completely matched n.sP and n.sV then // Case 1
5 Add reference r to node n
6 return
7 else if mismatch between k.P and n.sP or k.V and n.sV then // Case 3
8 // detailed description later
9 Insert k into restructured subtree rooted at n

10 return

11 Let np = n
12 Let n be the child of n with the matching discriminative byte
13 if n = NIL then // Case 2
14 Let n = new leaf node
15 Initialize n.sP and n.sV with remainder of k.P and k.V
16 Set n.D to ⊥
17 Insert r into n
18 Insert n into list of children of np

19 return

B.4.1 Strict Restructuring

The shifting of discriminative bytes in Case 3 invalidates the current dynamic interleaving and if
we want to preserve it we need to recompute it. An approach that achieves this collects all keys
rooted in the node where the mismatch occurred (in the example shown above, the mismatch oc-
curred in node n2), adds the new key to it, and then applies the bulk-loading algorithm to this set
of keys. This creates a new dynamic interleaving that is embedded in a trie and replaces the old
subtree. We call this method strict restructuring. It guarantees a strictly alternating interleaving
in the index, but the insertion operation is expensive if a large subtree is replaced. Figure B.4
shows the RCAS index after inserting the key (/bom/item/cassette$, 0000AB12).

Strict restructuring (Algorithm B.2) takes four input parameters: the root node n of the subtree
where the mismatch occurred, its parent node np (which is equal to NIL if n is the root), the new
key k, and a reference r to the indexed element in the hierarchical document. See Section B.6 for
a complexity analysis.

86 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

n1
(00,/bom/item/ca,V)

n2
(00,ε,P)

n13
(ssette$,AB12,⊥)

{r10}

n4
(r,ε,V)

n3
(00F1,abiner$,⊥)

{r2}

n5
(0A8C,/bumper$,⊥)

{r7}

n6
(0B4A,/belt$,⊥)

{r5}

n7
(0CC2,/brake$,⊥)

{r6, r8}

n12
(1964,/bench$,⊥)

{r9}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

Figure B.4: Inserting a key with the strict restructuring method.

Algorithm B.2: StrictRestructuring(n, np, k, r)
1 Let c = the set of all keys and their references rooted in n
2 Let c = c∪{(k,r)}
3 Let D = n.D // dimension used for starting interleaving
4 Let n′ = bulkload(c, D)
5 if np = NIL then replace original trie with n′; // n is root node
6 else replace n with n′ in np;

B.4.2 Lazy Restructuring

Giving up the guarantee of a strictly alternating interleaving allows us to insert new keys more
quickly. The basic idea is to add an intermediate node n′p that is able to successfully distinguish
its children: node n, where the mismatch happened and a new sibling nk that represents the new
key k. The new intermediate node n′p will contain all path and value bytes that are common to
node n and key k. Consequently, path and value substrings of n and nk contain all bytes that are
not moved to n′p. Node n is no longer a child of its original parent np, this place is taken by n′p. We
call this method lazy restructuring. While it does not guarantee a strictly alternating interleaving,
it is much faster than strict restructuring, as we can resolve a mismatch by inserting just two
nodes: n′p and nk. Figure B.5 shows RCAS after inserting the key (/bom/item/cassette$,
0000AB12) lazily. Node n13 and its child n2 partition the data both in the path dimension
(n.D = P) and therefore violate the strictly alternating pattern.

Inserting a key with lazy interleaving introduces small irregularities that are limited to the dy-
namic interleaving of the keys in node n’s subtree. These irregularities slowly separate (rather

B.4 Index Restructuring during Insertion 87

n1
(00,/bom/item/ca,V)

n13
(00,ε,P)

n2
(r,ε,P)

n3
(abiner$,00F1,⊥)

{r2}

n4
(/b,ε,V)

n5
(0A8C,umper$,⊥)

{r7}

n6
(0B4A,elt$,⊥)

{r5}

n7
(0CC2,rake$,⊥)

{r6, r8}

n12
(1964,ench$,⊥)

{r9}

n14
(ssette$,AB12,⊥)

{r10}

n8
(010E50,noe$,⊥)

{r1}

n9
(03D3,r/battery$,V)

n10
(5A,ε,⊥)
{r3, r′3}

n11
(B0,ε,⊥)
{r4}

Figure B.5: Inserting a new key with lazy restructuring.

than interleave) paths and values if insertions repeatedly force the algorithm to split the same
subtree in the same dimension. On the other hand, lazy restructuring can also repair itself when
an insertion forces the algorithm to split in the opposite dimension. We show experimentally in
Section B.7 that lazy restructuring is fast and offers good query performance.

Algorithm B.3 shows the pseudocode for lazy restructuring, it takes the same parameters as
Algorithm B.2. First, we create a new inner node n′p and then determine which dimension to use
for partitioning. If only a path mismatch occurred between n and k, we have to use P. In case of
a value mismatch, we have to use V . If we have mismatches in both dimensions, then we take the
opposite dimension of parent node np to keep up an alternating interleaving as long as possible.
The remainder of the algorithm initializes sP and sV with the longest common prefixes of n and k

and creates two partitions: one containing the original content of node n and the other containing
the new key k. The partition containing k is stored in a new leaf node nk. We also have to adjust
the prefixes in the nodes n and nk. Finally, n and nk are inserted as children of n′p, and n′p replaces
n in np. See Section B.6 for a complexity analysis.

88 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

Algorithm B.3: LazyRestructuring(n, np, k, r)
1 Let n′p = new inner node
2 Let n′p.D = determineDimension()
3 Let n′p.sP = longest common path prefix of n and k
4 Let n′p.sV = longest common value prefix of n and k
5 Let nk = new leaf node
6 Insert n and nk as children of n′p
7 Adjust sP and sV in n and nk
8 Insert r into nk
9 if np = NIL then replace original trie with n′p; // n is root node

10 else replace n with n′p in np;

B.5 Utilizing an Auxiliary Index

Using differential files to keep track of changes in a data collection is a well-established method
(e.g., LSM-trees [OCGO96]). Instead of updating an index in-place, the updates are done out-
of-place in auxiliary indexes and later merged according to a specific policy. We use the general
idea of auxiliary indexes to speed up the insertion of new keys into an RCAS index. However,
we apply this method slightly differently: we insert new keys falling under Case 1 and Case
2 directly into the main RCAS index, since these insertions can be executed efficiently. Only
the keys in Case 3 are inserted into an auxiliary RCAS index. As the auxiliary index is much
smaller than the main index, the strict restructuring method can be processed more efficiently
on the auxiliary index. Sometimes a Case 3 insertion into the main index even turns into a Case
1/2 insertion into the auxiliary index, as it contains a different set of keys. For an even faster
insertions we can use lazy restructuring in the auxiliary index.

There is a price to pay for using an auxiliary index: queries now have to traverse two indexes.
However, this looks worse than it actually is, since the total number of keys stored in both indexes
is the same. We investigate the trade-offs of using an auxiliary index and different insertion
strategies in Section B.7.

Using an auxiliary index only makes sense if the expensive insertion operations (Case 3) can
be executed much more quickly on the auxiliary index. To achieve this, we have to merge the
auxiliary index into the main index from time to time. This is more efficient than individually
inserting new keys into the main index, though, as the restructuring of a subtree in the main index
during the merge operation usually covers multiple new keys in one go rather than restructuring a
subtree for every individual insertion. We consider two different merge strategies. The simplest,

B.5 Utilizing an Auxiliary Index 89

but also most time-consuming, method is to collect all keys from the main and auxiliary index
and to bulk-load them into a new index.

n1
(00,/bom/item/ca,V)

n2
(00,r,P)

n3
(abiner$,00F1,⊥)

{r2}

n4
(/b,ε,V)

n5
(0A8C,umper$,⊥)

{r7}

n6
(0B4A,elt$,⊥)

{r5}

n7
(0CC2,rake$,⊥)

{r6}

n9
(03D35A,r/battery$,⊥)

{r3}

(a) Main index

n′1
(00,/bom/item/ca,V)

n′2
(010E50,noe$,⊥)

{r1}

n′3
(03CB,r/battery$,V)

n′4
(A1,ε,⊥)
{r8}

n′5
(FB,ε,⊥)
{r9}

(b) Auxiliary index

Figure B.6: A more sophisticated method merges only subtrees that differ.

Algorithm B.4: Merge(nm, na)
1 if na 6= NIL then
2 if nodes nm and na match then
3 foreach child ca of na do
4 Find corresponding child cm of nm

5 if cm does not exist then relocate ca to nm;
6 else merge(cm, ca);

7 else
8 Let K = all keys in subtrees nm and na

9 Let n′m = bulkload(K)
10 Replace nm with n′m in main index

A more sophisticated method traverses the main and auxiliary index in parallel and only if the
path and/or value substrings of two corresponding nodes do not match, we restructure this sub-
tree, bulk-load the keys into it, and insert it into the main index. Figure B.6 illustrates this method.
Since root nodes n1 and n′1 match, the algorithm proceeds to its children. For child n′2 we cannot
find a corresponding child in the main index, hence we relocate n′2 to the main index. For child
n′3 we find child n9 in the main index and since they differ in the value substring, the subtrees
rooted in these two trees are merged. Notice that child n2 in the main index is not affected by the
merging. Algorithm B.4 depicts the pseudocode. It is called with the root of the main index nm

and the root of the auxiliary index na. If nm’s and na’s values of substrings sP, sV and dimension

90 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

D match, we recursively merge the corresponding children of nm and na. Otherwise, we collect
all keys rooted in nm and na and bulk-load a new subtree.

B.6 Analysis

We first look at the complexity of Case 1 and 2 insertions, which require no restructuring (see
Section B.3). Inserting keys that require no restructuring takes O(h) time, where h is the height
of RCAS, since Algorithm B.1 descends the tree in O(h) time and in Case 1 the algorithm adds a
reference in O(1) time, while in Case 2 the algorithm adds one leaf in O(1) time. The complexity
of Case 3, which requires restructuring, depends on whether we use lazy or strict restructuring.

Theorem B.1. Inserting a key into RCAS with lazy restructuring takes O(h) time.

Proof. The insertion algorithm descends the tree to the position where a path or value mismatch
occurs in O(h) time. To insert the key, lazy restructuring adds two new nodes in O(1) time.

Theorem B.2. Inserting a key into RCAS with strict restructuring takes O(l ·N) time, where l is

the length of the longest key and N is the number of keys.

Proof. Descending the tree to the insertion position takes O(h) time. In the worst case, the
insertion position is the root node, which means strict restructuring collects all keys in RCAS
in O(N) time, and bulk-loads a new index in O(l ·N) time using the bulk-loading algorithm
from [WBH20].

The complexity of Case 3 insertions into the auxiliary index (if it is enabled) depends on the
insertion technique and is O(h) with lazy restructuring (Lemma B.1) and O(l ·N) with strict
restructuring (Lemma B.2). In practice, insertions into the auxiliary index are faster because it is
smaller. This requires that the auxiliary index is merged back into the main index when it grows
too big.

Theorem B.3. Merging an RCAS index with its auxiliary RCAS index using Algorithm B.4 takes

O(l ·N) time.

Proof. In the worst case, the root nodes of the RCAS index and its auxiliary RCAS index mis-
match, which means all keys in both indexes are collected and a new RCAS index is bulk-loaded
in O(l ·N) time [WBH20].

B.7 Experimental Evaluation 91

B.7 Experimental Evaluation

Setup. We use a virtual Ubuntu server with 8GB of main memory and an AMD EPCY 7702 CPU
with 1MB L2 cache. All algorithms are implemented in C++ and compiled with g++ (version
10.2.0). The reported runtime measurements represent the average time of 1000 experiment runs.

Dataset. We use the ServerFarm dataset from [WBH20] that contains information about the files
on a fleet of 100 Linux servers. The path and value of a composite key denote the full path of a
file and its size in bytes, respectively. We eliminate duplicate keys because they trigger insertion
Case 1, which does not change the structure of the index (see Section B.3). Without duplicates,
the ServerFarm dataset contains 9.3 million keys.

Reproducibility. The code, dataset, and instructions how to reproduce our experiments is avail-
able at: https://github.com/k13n/rcas_update.

B.7.1 Runtime of Strict and Lazy Restructuring

We begin by comparing the runtime of lazy restructuring (LR) and strict restructuring (SR) either
applied on the main index directly, or applied on the combination of main and auxiliary index
(Main+Aux). When the auxiliary index is used, insertion Cases 1 and 2 are performed on the
main index, while Case 3 is performed on the auxiliary index with LR or SR. In this experiment
we bulk-load 60% of the dataset (5607400 keys) and insert the remaining 40% (3738268 keys)
one-by-one. Bulk-loading RCAS with 5.6M keys takes 12 seconds, which means 2.15µs per
key. Figure B.7a shows the average runtime (x̄) and the standard deviation (σ) for the different
insertion techniques. We first look at LR and SR when they are applied to the main index only.

Approach x̄ σ

Bulk-load 2.15 N/A
Main (LR) 3.18 4.11
Main (SR) 4.75 41.71
Main+Aux (LR) 4.65 3.47
Main+Aux (SR) 5.98 34.98

(a) Average runtime x̄ [µs]
Standard deviation σ [µs]

[0,101) [101,102) [102,103) [103,104) [104,∞)

101

104

107

(b) Runtime distribution [µs]

In
se

rt
io

ns

Figure B.7: Runtime of insertions.

https://github.com/k13n/rcas_update

92 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

LR is very fast with an average runtime of merely 3µs per key. This is expected since LR only
needs to insert two new nodes into the index. SR on the other hand, takes on average about 5µs
and is thus not significantly slower than LR, on average. The runtime of SR depends greatly on
the level in the index where the mismatch occurs. The closer to the root the mismatch occurs, the
bigger is the subtree this technique needs to rebuild. Therefore, we expect that even if the average
runtime is low, the variance is higher. Indeed, the standard deviation of SR is 41µs compared to
4µs for LR. This is confirmed by the histogram in Figure B.7b, where we report the number of
insertions that fall into a given runtime range (as a reference point, we report for bulk-loading that
all 5.6M keys have a runtime of 2.15µs per key). While most insertions are quick for all methods,
SR has a longer tail and a significantly higher number of slow insertions (note the logarithmic
axes). Applying LR and SR to the auxiliary index slightly increases the average runtime since
two indexes must be traversed to find the insertion position, but the standard deviation decreases
since there are fewer expensive updates to the auxiliary index, see Figure B.7b.

B.7.2 Query Runtime

We look at the query performance after updating RCAS with our proposed insertion techniques.
We simulate that RCAS is created for a large semi-structured dataset that grows over time. For
example, the Software Heritage archive [ACZ18, DCZ17], which preserves publicly-available
source code, grows ca. 35% to 40% a year [RCZ20]. Therefore, we bulk-load RCAS with the
at least 60% of our dataset and insert the remaining keys one by one to simulate a year worth
of insertions. We expect SR to lead to better query performance than LR since it preserves
the dynamic interleaving, while LR can introduce small irregularities. Further, we expect that
enabling the auxiliary index does not significantly change the query runtime since the main and
auxiliary indexes, when put together, are of similar size as the (main) RCAS index when no
auxiliary index is used.

In Figure B.8a we report the average runtime for the six CAS queries from [WBH20]. For exam-
ple, the first query looks for all files nested arbitrarily deeply in the /usr/include directory
that are at least 5KB large, expressed as (/usr/include//, [5000,∞]). The results are sur-
prising. First, SR in the main index leads to the worst query runtime and the remaining three
approaches lead to faster query runtimes. To see why, let us first look at Figure B.8b that shows
the number of nodes traversed during query processing (if the auxiliary index is enabled, we
sum the number of nodes traversed in both indexes). The queries perform better when the aux-

B.7 Experimental Evaluation 93

60 70 80 90 100
0

20

40

60

(a) Bulk-Load Percentage

R
un

tim
e

[m
s]

Main (LR) Main (SR) Main+Aux (LR) Main+Aux (SR)

60 70 80 90 100
0

20

40

60

(b) Bulk-Load Percentage
R

ea
d

N
od

es
[×

10
3]

60 70 80 90 100
0

10

20

30

40

(c) Bulk-Load Percentage

C
ac

he
M

is
se

s
[%

]

Figure B.8: Query performance.

iliary index is enabled because fewer nodes are traversed during query processing, which means
subtrees were pruned earlier.

Figure B.8b does not explain why LR leads to a better query performance than SR since with
both approaches the queries need to traverse almost the same number of nodes. To find the
reason for the better query runtime we turn to Figure B.8c, which shows that query runtime
and the CPU cache misses1 are highly correlated. SR leads to the highest number of cache
misses due to memory fragmentation. When the index is bulk-loaded its nodes are allocated in
contiguous regions of the main memory. The bulk-loading algorithm builds the tree depth-first
in pre-order and the queries follow the same depth-first approach (see [WBH20]). As a result,
nodes that are traversed frequently together have a high locality of reference and thus range
queries typically access memory sequentially, which is faster than accessing memory randomly
[PHD16]. Inserting additional keys fragments the memory. Strict restructuring (SR) deletes and
rebuilds entire subtrees, which can leave big empty gaps between contiguous regions of memory
and as a result experiences more cache misses in the CPU during query processing. LR causes
fewer cache misses in the CPU than SR because it fragments the memory less. This is because
LR always inserts two new nodes whereas SR inserts and deletes large subtrees, which can leave
big gaps in memory.

The query runtime improves for all approaches as we bulk-load a larger fraction of the dataset
because the number of cache misses decreases. Consider the strict restructuring method in the
main index (green curve). By definition, SR structures the index exactly as if the index was
entirely bulk-loaded. This can also be seen in Figure B.8b where the number of nodes traversed
to answer the queries is constant. Yet, the query runtime improves as we bulk-load more of the

1We measure the cache misses with the perf command on Linux, which relies on the Performance Monitoring
Unit (PMU) in modern processors to record hardware events like cache accesses and misses in the CPU.

94 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

index because the number of cache misses is reduced due to less memory fragmentation (see
explanation above). Therefore, it is best to rebuild the index from scratch after inserting many
new keys.

B.7.3 Merging of Auxiliary and Main Index

We compare two merging techniques: (a) the slow approach that takes all keys from both indexes
and replaces them with a bulk-loaded index, and (b) the fast approach that descends both indexes
in parallel and only merges subtrees that differ. In the following experiment we bulk-load the
main index with a fraction of the dataset, insert the remaining keys into the auxiliary index,
and merge the two indexes with one of the two methods. Figure B.9a shows that fast merging
outperforms the slow technique by a factor of three. This is because the slow merging needs to
fully rebuild a new index from scratch, while the fast merging only merges subtrees that have
actually changed. In addition, if fast merging finds a subtree in the auxiliary index that does not
exist it the main index, it can efficiently relocate that subtree to the main index.

60 70 80 90
0

10

20

30

Bulk-Load Percentage

(a) Merge Performance

M
er

ge
R

un
tim

e
[s

]

Slow Merging Fast Merging

60 70 80 90
0

20

40

60

Bulk-Load Percentage

(b) Query Performance

Q
ue

ry
R

un
tim

e
[m

s]

60 70 80 90
0

20

40

Bulk-Load Percentage

(c) Query Cache Misses

C
ac

he
M

is
se

s
[%

]

Figure B.9: Merging and querying performance.

After merging the auxiliary index into the main index, we look at the query runtime of the
main index in Figure B.9b. Slow merging leads to a better query performance than fast merging
because slow merging produces a compact representation of the index in memory (see discussion
above), while fast merging fragments the memory and leads to cache misses in the CPU (Figure
B.9c).

B.8 Related Work 95

B.7.4 Summary

Our experiments show that RCAS can be updated efficiently, but to guarantee optimal query
performance it is recommended to rebuild the index occasionally. The best way to insert keys
into the RCAS index is to use an auxiliary index with lazy restructuring (LR). LR is faster and
leads to better query performance than strict restructuring since it causes fewer cache misses
in the CPU during query processing. When the auxiliary index becomes too large, it is best to
merge it back into the main RCAS index with the slow merging technique, i.e., the main index is
bulk-loaded from scratch including all the keys from the auxiliary index.

B.8 Related Work

Updating RCAS is difficult due to its dynamic interleaving scheme that adapts to the data dis-
tribution [WBH20]. Inserting or deleting keys can invalidate the position of the discriminative
bytes and change the dynamic interleaving of other keys.

Interleaving bits and bytes is a common technique to build multi-dimensional indexes, e.g., the
z-order curve [OM84] interleaves the dimensions bit-wise. These schemes are static since they
interleave at pre-defined positions (e.g., one byte from one dimension is interleaved with one
byte from another dimension). Because the interleaving is static, individual keys can be inserted
and deleted without affecting the interleaving of other keys. QUILTS [NY17] devises static
interleavings that optimize for a given query workload. However, Nishimura et al. [NY17] do not
discuss what happens if the query workload changes and with it the static interleaving scheme,
which affects the interleavings of all keys.

Existing trie-based indexes, e.g., PATRICIA [Mor68], burst tries [HZW02], B-tries [AZ09], and
ART [LKN13], solve insertion Case 3 by adding a new parent node to distinguish between the
node where the mismatch happened and its new sibling node. Lazy restructuring is based on this
technique, but we must decide in which dimension the parent node partitions the data since we
deal with two-dimensional keys.

Using auxiliary index structures to buffer updates is a common technique [JNS+97, OCGO96,
SL76]. Log-structured merge trees (LSM-trees [OCGO96]) have been developed to ingest data
arriving at high speed, see [LC19] for a recent survey. Instead of updating an index in-place, i.e.,
overwriting old entries, the updates are done out-of-place, i.e., values are stored in an auxiliary

96 Chapter B. Inserting Keys into the Robust Content-and-Structure (RCAS) Index

index and later merged back. We redirect Case 3 insertions to a small auxiliary RCAS index that
would otherwise require an expensive restructuring of the main RCAS index.

The buffer tree [Arg03] amortizes the cost of updates by buffering all updates at inner nodes and
propagating them one level down when the buffers overflow. Instead, we apply the inexpensive
Case 1 and 2 insertions immediately on the main RCAS index and redirect Case 3 insertions to
the auxiliary RCAS index.

B.9 Conclusion and Outlook

We looked at the problem of supporting insertions in the RCAS index [WBH20], an in-memory,
trie-based index for semi-structured data. We showed that not every insertion requires restructur-
ing the index, but for the cases where the index must be restructured we proposed two insertion
techniques. The first method, called strict restructuring, preserves RCAS’s alternating interleav-
ing of the data’s content and structure, while the second method, lazy restructuring, optimizes
for insertion speed. In addition, we explore the idea of using an auxiliary index (similar to
LSM-trees [LC19]) for those insertion cases that would require restructuring the original index.
Redirecting the tough insertion cases to the auxiliary index leaves the structure of the main index
intact. We proposed techniques to merge the auxiliary index back into the main index when the
auxiliary index grows too big. Our experiments show that these techniques can efficiently insert
new keys into RCAS and preserve its good query performance.

For future work we plan to support deletion. Three deletion cases can occur that mirror the three
insertion cases. Like for insertion, the first two cases are simple and can be solved by deleting
a reference from a leaf or the leaf itself if it contains no more references. The third case occurs
when the dynamic interleaving is invalidated because the positions of the discriminative bytes
shift. Deletion algorithms exist that mirror our proposed insertion techniques for the third case.

97

APPENDIX C

Scalable Content-and-Structure Indexing

Reprinted from:

K. Wellenzohn, M. H. Böhlen, S. Helmer, A. Pietri, S. Zacchiroli. “Scalable Content-and-
Structure Indexing”, [ready for submission]

98 Chapter C. Scalable Content-and-Structure Indexing

Abstract

Frequent queries on semi-structured data are Content-and-Structure (CAS) queries that filter data
items based on their location in the hierarchical structure and their value for some attribute.
Existing CAS indexes either do not have robust CAS query performance or do not scale. We
propose the scalable and robust CAS (RCAS+) index that tackles both issues. To build RCAS+

at scale we propose lazy interleaving to reduce the CPU load, node clustering and proactive

partitioning to curb disk accesses, and depth-first bulk-loading and front-loading to optimally
use the available memory. Our detailed analytical and experimental evaluation shows that the
combination of these five techniques yields a scalable CAS index. We show-case RCAS+’s
scalability and practical applicability by indexing data from the Software Heritage archive, which
is the world’s largest, publicly-available source code archive.

C.1 Introduction

The field of mining software repositories [Has08] has seen growing interest in the past decades
since studying software artifacts at scale is important for software engineering applications. The
way researchers study large collections of software artifacts, and source code in particular, is to
narrow down the subset of artifacts (i.e., commits, directories, and files) that are relevant to the
study and to analyze this subset.

Offering a platform that allows researchers to efficiently perform the selection step in software
archives is an important research goal that various recent efforts like Boa, World of Code, and
Software Heritage have been trying to tackle [DNRN15,MDB+21,PSZ20]. We look at Content-
and-Structure (CAS) queries [MHSB15] that allow researchers to locate revisions (i.e., commits)
in a large body of source code artifacts based on the commit time of the revisions and the names
and paths of the files that they modified (added/changed/deleted). CAS queries consist of a path
and a value predicate. The path predicate filters revisions based on the location and name of the
modified files in the file system; it allows wildcards to widen the search when the exact locations
or names of the files are not known. The value predicate filters revisions based on an attribute,
e.g., commit time, author, etc.

Systems like Boa, World of Code, and Software Heritage cannot answer CAS queries. We aim
to implement this missing piece in the software mining infrastructure by providing an index that

C.1 Introduction 99

efficiently answers CAS queries. As a case study, we compute this index for all GitLab reposito-
ries maintained by the Software Heritage (SWH) archive, which is the largest publicly-available
software archive [ACZ18, DCZ17] with more than two billion revisions from 150 million repos-
itories retrieved from GitHub, GitLab, etc.

To efficiently evaluate CAS queries we use the Robust CAS (RCAS) index [WBH20], which
tightly integrates the path and value dimensions by interleaving the paths and values of two-
dimensional keys into a single byte-string without favoring one of the dimensions. This is
achieved by RCAS’s dynamic interleaving scheme that interleaves keys at their discriminative
path and value bytes, which are the first bytes for which the keys differ in the respective di-
mension. RCAS does not scale to large datasets since it is an in-memory index based on a
memory-optimized trie (ART [LKN13]). Scaling RCAS to large datasets is challenging. First,
extending RCAS to block storage devices is not straightforward since its nodes are not aligned
with a page-structured storage layout. Second, the RCAS construction algorithm is limited by
main-memory data structures and algorithms that do not scale. For instance, on a machine with
400 GB main memory it is not possible to index datasets larger than 100 GB with RCAS.

We propose the scalable RCAS+ index that is not constrained by the available memory. We
develop a scalable algorithm that builds RCAS+ while, at the same time, dynamically interleaving
the keys. It is partitioning-based and in each partitioning step we interleave the longest common
path and value prefixes of the keys and store them in a new node in RCAS+. Our partitioning
is order- and prefix-preserving, which means that the partitions are totally ordered and the keys
in a partition have a longer common prefix than keys from different partitions. These properties
make it possible to efficiently evaluate the value and path predicates of CAS queries.

We propose five techniques that make building RCAS+ at scale feasible in terms of, respectively,
CPU, memory, and disk1 usage. CPU: Lazy interleaving stops to dynamically interleave a set of
keys when they fit on a disk page and stores their un-interleaved suffixes in a single leaf node.
This speeds up bulk-loading by an order of magnitude without compromising query performance.
Disk: Node clustering aligns nodes with pages of block-based storage devices to compactly
store and efficiently search the RCAS+ index. Proactive partitioning exploits that the data is
partitioned hierarchically and pre-computes the discriminative bytes of new partitions at the next
level while partitioning a set of keys. By the time the new partitions are being partitioned we have
already computed the discriminative bytes. Memory: Depth-first bulk-loading guarantees that
only a small number of nodes have to be kept in memory before they can be written to disk by

1We use the term disk to refer to any generic block-storage device (HDD, SSD, etc.)

100 Chapter C. Scalable Content-and-Structure Indexing

node clustering. Front-loading optimally uses the remaining memory to buffer partitions. When
a set of keys K is broken up into partitions {K1,K2, . . .}, front-loading keeps those partitions
in memory that are processed next during bulk-loading.

Our main technical contributions are as follows:

• We propose the scalable RCAS+ index for large datasets that is not constrained by the
available memory. RCAS+ is based on a hierarchical partitioning that is order- and
prefix-preserving, which allows us to evaluate CAS queries efficiently. We propose a new
bulk-loading algorithm for large datasets that dynamically interleaves the keys and builds
RCAS+ at the same time.

• We propose five techniques to make our bulk-loading algorithm scalable. Lazy interleav-

ing stops to dynamically interleave keys when they fit into a leaf page. Node clustering

aligns nodes with block-based storage devices. Proactive partitioning pre-computes the
discriminative bytes needed at the next level of the hierarchical partitioning. Depth-first

bulk-loading curbs the memory footprint of the algorithm so that most of the memory can
be used by front-loading to optimally buffer partitions that are processed next.

• We evaluate our bulk-loading algorithm analytically and experimentally. In our analytical
evaluation we develop a cost model, and prove best and worst case bounds on the algo-
rithm’s disk I/O. In our experiments we demonstrate the scalability and performance of
our algorithm by indexing all GitLab projects archived by Software Heritage with a total
of 120 million unique commits that modify 6.9 billion files.

C.2 Application Scenario

The SWH archive2 lets users look up repositories by keyword search on their URLs or metadata
or look up specific software artifacts by cryptographic identifiers that must be known in advance.
More complex CAS queries, such as the following, are not supported:

CAS Query. Find all revisions in the SWH archive that changed a C file in June 2020 (expressed
as time range [2020-06-01,2021-07-01)). The file must be in a folder that begins with name ext

2https://archive.softwareheritage.org

https://archive.softwareheritage.org

C.3 Background 101

and can be located anywhere in the directory structure of a project (expressed as query path
/**/ext*/*.c). 2

This CAS query consists of a path predicate expressed as a query path (blue) and a value predicate
expressed as a range (red). Often the exact location of a file is unknown, but parts of its path are
known. We use a shell-like syntax with wildcards to widen the search. For instance, ext*
matches any label starting in ext, e.g., ext3, extension, etc. The wildcard ** denotes the
descendant-or-self axis and matches any file nested arbitrarily deeply in a folder.

Table C.1: A set K 1..9 = {k1, . . . ,k9} of composite keys

Path Dimension P Value Dimension V R
k1 /Sources/Scheduler.swift$ 000000005DBD978B r1
k2 /crypto/ecc.h$ 000000005FBD94C4 r2
k3 /crypto/ecc.c$ 000000005FBD94C4 r2
k4 /Sources/Signal.swift$ 000000005DA8948C r3
k5 /fs/ext3/inode.c$ 000000005EF29C59 r4
k6 /fs/ext4/inode.c$ 000000005EFB23C2 r5
k7 /fs/ext4/inode.c$ 000000005FBD3D5A r6
k8 /Sources/Bag.swift$ 000000005DA8942A r7
k9 /Sources/Map.swift$ 000000005DA8942A r7

1 5 9 13 17 21 1 2 3 4 5 6 7 8

Answering CAS queries on billions of files is difficult since we have to dynamically interleave
and index two-dimensional keys from the SWH archive to answer CAS queries efficiently. Table
C.1 shows such composite keys. Key k7 denotes that file inode.c in the /fs/ext4 directory
was modified on 2020-11-24 in revision r6. The values are stored as 64 bit Unix timestamps and
are represented in hexadecimal. Revisions are identified by 20 byte SHA1 hashes in the SWH
archive. Our example query returns revisions {r4,r5} since keys {k5,k6} match both the path
and value predicate.

C.3 Background

C.3.1 Notation & Terminology

A revision in the SWH archive captures what is commonly referred to as a “commit” in modern
version control systems. A revision references the entire source code tree of a software project at

102 Chapter C. Scalable Content-and-Structure Indexing

commit time, points to previous revision(s)—allowing to compute source code “diffs” between
commits—and is associated to metadata such as commit time and author.

We index for each revision in the SWH archive its commit time and its diff, i.e., what files
are added/changed/deleted. If a revision’s diff and more than one attribute (e.g., commit time
and author) must be indexed, multiple indexes are created. We store dynamically-interleaved
composite keys in our index that consist of a path dimension P (the full path of the modified file)
and a value dimension V (the commit time of the revision). Additionally, a key stores a revision
as payload. We write k.P, k.V , and k.R to access k’s path, value, and revision, respectively. We
write k.D to access k’s path (if D = P) or value (if D = V). We denote a set of keys by K and
write, e.g., K 2,5,6 to refer to {k2,k5,k6}. The set of nine (un-interleaved) keys in Table C.1 is
denoted by K 1..9.

Paths and values are prefix-free byte strings that we access byte-wise. In the paper we visualize
them with one byte ASCII characters for the path dimension and hexadecimal numbers written
in italic for the value dimension, see Table C.1. To guarantee that no path is a prefix of another
we append the end-of-string character $ (ASCII code 0x00) to each path. Fixed-length byte
strings (e.g., 64 bit numbers) are prefix-free because of the fixed length. We assume that the path
and value dimensions are binary-comparable, i.e., two paths or values are <, =, or > iff their
corresponding byte strings are also <, =, or >, respectively [LKN13]. For example, big-endian
integers are binary-comparable while little-endian integers are not.

Let s be a byte-string, then |s| denotes the length of s and s[i] denotes the i-th byte in s. The
left-most byte of a byte-string is byte one. s[i] = ε is the empty string if i > |s|. s[i, j] denotes the
substring of s from position i to j and s[i, j] = ε if i > j.

Given a set of keys K we define its longest common prefix lcp(K ,D) and discriminative byte

dsc(K ,D) in dimension D.

Definition C.1 (Longest Common Prefix). The longest common prefix lcp(K ,D) of keys K in
dimension D is the longest prefix s that all keys k ∈K share in dimension D, i.e.,

lcp(K ,D) = s iff ∀k ∈K (k.D[1, |s|] = s)∧

@l(l > |s|∧∀k,k′ ∈K (l ≤min(|k.D|, |k′.D|)∧ k.D[1, l] = k′.D[1, l]))

Definition C.2 (Discriminative Byte). The discriminative byte dsc(K ,D) of keys K in dimen-

sion D is the first byte for which the keys differ in dimension D, i.e., dsc(K ,D)= |lcp(K ,D)|+1.

C.3 Background 103

Example C.1. Consider the composite keys K 1..9 in Table C.1. The longest common path and

value prefixes are lcp(K 1..9,P) = / and lcp(K 1..9,V) = 00000000. The discriminative path

and value bytes are dsc(K 1..9,P) = 2 and dsc(K 1..9,V) = 5. 2

C.3.2 Dynamic Interleaving in the RCAS Index

RCAS is a trie-based index that dynamically interleaves sets of composite keys at their discrim-
inative path and value bytes [WBH20]. Interleaving at the discriminative bytes makes RCAS
robust against long common prefixes that are common in alphanumeric keys. To interleave keys
we start with the set of all keys K and partition them based on the value at the discriminative
byte in dimension D.

Definition C.3 (ψ-Partitioning [WBH20]). The ψ-partitioning of a set of keys K in dimension

D is ψ(K ,D) = {K1, . . . ,Km} iff

• (Correctness) All keys in a set Ki have the same value at K ’s discriminative byte in D.

Keys from different sets Ki 6= K j do not have the same value at K ’s discriminative byte

in D.

• (Completeness) Every key in K is assigned to a set Ki. All Ki are non-empty.

Example C.2. The ψ-partitioning of K 1..9 in dimension V is ψ(K 1..9,V) =

{K 1,4,8,9,K 5,6,K 2,3,7}. The keys in these three sets have, respectively, the values 0x5D,

0x5E, and 0x5F at K 1..9’s discriminative value byte, which is the fifth byte. 2

RCAS alternatingly ψ-partitions the keys in dimensions V and P and each index node represents
one of the partitions. The longest common prefixes of each partition are stored in the correspond-
ing node as path substring sP and value substring sV . Thus, a node in RCAS is a tuple (sP,sV ,D)

where sP and sV denote the longest common path and value prefix of all composite keys con-
tained in its descendants, and D is the dimension in which this node ψ-partitions the data (D =⊥
for leaves that do not partition the data further). Note that if we concatenate substrings sP and sV

from the root to a leaf we obtain a dynamically-interleaved composite key.

Example C.3. Consider the index in Figure C.1 for the keys K 1..9 in Table C.1 (ignore the

dotted lines for the moment). The root node’s substrings sP = / and sV = 00000000 are the

longest common path and value prefixes of all keys in K 1..9. The root node ψ-partitions the data

104 Chapter C. Scalable Content-and-Structure Indexing

n1 (30 bytes):
(/,00000000,V)

n2 (34 bytes):
(Sources/,5D,P)

n6 (74 bytes):
(fs/ext,5E,⊥)

{(3/indoe.c$,F29C59,r4),
(4/inode.c$,FB23C2,r5)}

n7 (19 bytes):
(ε,5FBD,P)

n8 (58 bytes):
(crypto/ecc.,94C4,⊥)
{(h$,ε,r2), (c$,ε,r2)}

n9 (39 bytes):
(fs/ext4/inode.c$,3D5A,⊥)

{(ε,ε,r6)}

n3 (34 bytes):
(Bag.swift$,A8942A,⊥)

{(ε,ε,r7)}
n4 (34 bytes):

(Map.swift$,A8942A,⊥)
{(ε,ε,r7)}

n5 (75 bytes):
(S,ε,⊥)

{(cheduler.swift$,BD978B,r1),
(ignal.swift$,A8948C,r3)}

n : (sP,sV ,D) Node n
Index page

Figure C.1: RCAS+ index for the keys K 1..9 from Table C.1. The page size is 100 bytes in this
example.

in the value dimension since n1.D =V . If we follow the path from the root to leaf node n3 we find

key k8 with its reference r7. Its dynamic interleaving is:

“/ 00000000 Sources/ 5D Bag.swift$ A8942A”. 2

C.4 The Scalable RCAS+ Index

RCAS+ combines depth-first bulk-loading with node clustering and lazy interleaving to achieve
good scalability. Depth-first bulk-loading ensures a small memory footprint. Node clustering
aligns nodes to a page-structured disk since nodes are typically small and do not fill a disk page.
Lazy interleaving combines multiple keys in the same leaf node. Specifically, leaf nodes store
a set refs = {(sP,sV ,r), . . .} of un-interleaved key suffixes sP and sV along with their payload (a
reference r).

Example C.4. Leaf n5 in Figure C.1 contains the suffixes of keys {k1,k4}. The dotted boxes show

how nodes are clustered into pages. RCAS+ for keys K 1..9 is stored in five pages. 2

C.4 The Scalable RCAS+ Index 105

C.4.1 Depth-First Bulk-Loading

Building RCAS+ at scale is hard because a set of keys must be considered together to dynamically
interleave the keys. The reason is that the discriminative bytes depend on all keys in a set.
This makes inserting keys one by one (or in batches) impossible and sort-based bulk-loading
impractical since the initial computation of the interleaving is too expensive. We propose a
partitioning-based algorithm that simultaneously interleaves the keys and builds RCAS+. The
algorithm creates nodes in RCAS+ top-down and clusters them into pages bottom-up. Depth-

first bulk-loading ensures that the number of nodes kept in memory is small.

Initially, all keys belong to the root partition. We use partitions during bulk-loading to temporar-
ily store keys along with meta-information. Once a partition has been processed, it is deleted.

Definition C.4 (Partition). A partition K = (gP,gV ,mptr, fptr) stores a set K of composite keys.

A key is stored either in memory or on disk. mptr and fptr are pointers to keys in memory and

on disk, respectively. gP = dsc(K ,P) and gV = dsc(K ,V) denote the partition’s discriminative

path and value byte, respectively. We write K to denote the set of keys stored in K. 2

Example C.5. Root partition K1..9 = (2,5,•,•) in Figure C.2a stores keys K 1..9 from Table C.1.

K1..9’s longest common prefixes are written in bold-face and the first bytes after these prefixes

are K1..9’s discriminative bytes gP = 2 and gV = 5. We use the placeholder • for pointers mptr

and fptr; in Section C.6 we describe which keys are stored, respectively, in memory and on disk.

2

Bulk-loading starts with the root partition K and repeatedly breaks it into smaller partitions using
the ψ-partitioning until a partition fits on a page. The ψ-partitioning ψ(K,D) takes a partition
K as input and returns a partition table where each entry in this table points to a partition Ki.
We apply ψ alternatingly in dimensions V and P to interleave the keys at their discriminative
bytes. Before we apply ψ(K,D) on a partition K, we add a new node to RCAS+ that extracts
K’s longest common path and value prefixes. This new node resides temporarily in memory
before it is written to disk. RCAS+ nodes are typically small (tens or hundreds of bytes) and do
not fill a page (thousands of bytes). This is because inner nodes have at most 28 children since
we partition at the granularity of bytes, but in practice the fanout is often lower. We use node

clustering to align nodes to page-structured storage (see Section C.4.3).

We build RCAS+ depth-first in pre-order and cluster the nodes in post-order (i.e., we build the
index subtree by subtree rather than level by level) to keep the number of memory-resident nodes

106 Chapter C. Scalable Content-and-Structure Indexing

Partition K = (gP,gV ,mptr, fptr) Partition Table T
Index Page in RCAS+ n : (sP,sV ,D) Node n in RCAS+

K1..9 = (2,5,•,•)
/Sources/Scheduler.swift$ 000000005DBD978B r1
/crypto/ecc.h$ 000000005FBD94C4 r2
/crypto/ecc.c$ 000000005FBD94C4 r2
/Sources/Signal.swift$ 000000005DA8948C r3
/fs/ext3/inode.c$ 000000005EF29C59 r4
/fs/ext4/inode.c$ 000000005EFB23C2 r5
/fs/ext4/inode.c$ 000000005FBD3D5A r6
/Sources/Bag.swift$ 000000005DA8942A r7
/Sources/Map.swift$ 000000005DA8942A r7

(a) Root partition K1..9

n1:
(/,00000000,V)

· · · 5D 5E 5F · · ·

K1,4,8,9 = (9,2,•,•)
Sources/Bag.swift$ 5DA8942A r7
Sources/Map.swift$ 5DA8942A r7
Sources/Scheduler.swift$ 5DBD978B r1
Sources/Signal.swift$ 5DA8948C r3

K5,6 = (7,2,•,•)
fs/ext3/inode.c$ 5EF29C59 r4
fs/ext4/inode.c$ 5EFB23C2 r5

K2,3,7 = (1,3,•,•)
crypto/ecc.h$ 5FBD94C4 r2
crypto/ecc.c$ 5FBD94C4 r2
fs/ext4/inode.c$ 5FBD3D5A r6

(b) K1..9 from (a) is ψ-partitioned in dimension V

Figure C.2: (Part 1) The keys are recursively ψ-partitioned depth-first, creating new RCAS+

nodes in pre-order. A node represents the longest common path and value prefixes of its corre-
sponding partition. Nodes are clustered into pages in post-order.

C.4 The Scalable RCAS+ Index 107

Partition K = (gP,gV ,mptr, fptr) Partition Table T
Index Page in RCAS+ n : (sP,sV ,D) Node n in RCAS+

n1:
(/,00000000,V)

· · · 5D 5E 5F · · ·

n2:
(Sources/,5D,P)
· · · B · · · M · · · S · · ·

K5,6 = (7,2,•,•)
fs/ext3/inode.c$ 5EF29C59 r4
fs/ext4/inode.c$ 5EFB23C2 r5

K2,3,7 = (1,3,•,•)
crypto/ecc.h$ 5FBD94C4 r2
crypto/ecc.c$ 5FBD94C4 r2
fs/ext4/inode.c$ 5FBD3D5A r6

K8 = (11,4,•,•)
Bag.swift$ A8942A r7

K9 = (11,4,•,•)
Map.swift$ A8942A r7

K1,4 = (2,1,•,•)
Scheduler.swift$ BD978B r1
Signal.swift$ A8948C r3

(c) K1,4,8,9 from (b) is ψ-partitioned in dimension P

n1:
(/,00000000,V)

· · · 5D 5E 5F · · ·

n2 (34 bytes):
(Sources/,5D,P)

K5,6 = (7,2,•,•)
fs/ext3/inode.c$ 5EF29C59 r4
fs/ext4/inode.c$ 5EFB23C2 r5

K2,3,7 = (1,3,•,•)
crypto/ecc.h$ 5FBD94C4 r2
crypto/ecc.c$ 5FBD94C4 r2
fs/ext4/inode.c$ 5FBD3D5A r6

n3 (34 bytes):
(Bag.swift$,A8942A,⊥)

{(ε,ε,r7)}

n4 (34 bytes):
(Map.swift$,A8942A,⊥)

{(ε,ε,r7)}

n5 (75 bytes):
(S,ε,⊥)

{(cheduler.swift$,BD978B,r1),
(ignal.swift$,A8948C,r3)}

(d) Nodes are clustered into index pages from the bottom up in post order

Figure C.2: (Part 2) The keys are recursively ψ-partitioned depth-first, creating new RCAS+

nodes in pre-order. A node represents the longest common path and value prefixes of its corre-
sponding partition. Nodes are clustered into pages in post-order.

108 Chapter C. Scalable Content-and-Structure Indexing

small. With depth-first bulk-loading and node clustering we only need to hold O(h) nodes in
memory, where h is the height of the tree. Specifically, we need to keep all of the current node’s
ancestors and a limited number of its siblings in memory that do not yet fill a page (see Lemma
C.5). This leaves most of the memory to curb disk I/O by buffering partitions during partitioning
steps (see Section C.6).

Algorithm C.1: DepthFirstBulkLoading(K,D)

1 Let n be a new node, k a key in K;
2 n.sP← k.P[1,K.gP−1];
3 n.sV ← k.V [1,K.gV −1];
4 if K fits on one page then LazyInterleaving(K,n);
5 else
6 if D = P∧K.gP > |k.P| then D←V ;
7 else if D =V ∧K.gV > |k.V | then D← P;
8 n.D← D;
9 T ← ψ(K,D);

10 for b← 0x00 to 0xFF do
11 if T [b] 6= NIL then n.ptrs[b]← DepthFirstBulkLoading(T [b],D);

12 NodeClustering(n);
13 return n;

Algorithm C.1 shows the bulk-loading algorithm. It has two parameters: a partition K (initially
the root partition) and the partitioning dimension D (initially dimension V). The algorithm first
creates a new node n and sets its longest common prefixes n.sP and n.sV , which are extracted from
a key k ∈K from the first byte up to, but excluding, the positions of K’s discriminative bytes K.gP

and K.gV (lines 2–3). If K fits on one disk page, we apply lazy interleaving (Algorithm C.2).
Otherwise, we ψ-partition K in dimension D. In lines 6–7 we check if we can indeed ψ-partition
K in D and switch to the alternate dimension D otherwise (D = P if D =V and vice versa). This
happens if all keys are equal in dimension D and therefore must be partitioned in D. In line 9 we
apply ψ(K,D) and obtain a partition table T , which is a 28-long array that maps the 28 possible
values b of a discriminative byte (0x00≤ b≤ 0xFF) to partitions. We write T [b] to access the
partition for value b (T [b] = NIL if no partition exists for value b). We apply Algorithm C.1
depth-first and recursively call it on each partition in T with the alternate dimension D. This
returns a pointer to each new child node of n that we store in n.ptrs. At this point, in line 12,
the current node n is complete: its contents (substrings n.sP,n.sV and dimension n.D) have been
determined and its children, if any, have been computed. Hence, we can now assign node n to an
index page (Algorithm C.3).

C.4 The Scalable RCAS+ Index 109

Example C.6. Figure C.2 shows how RCAS+ from Figure C.1 is built. In Figure C.2b we create

its root node n1 from root partition K1..9 by extracting K1..9’s longest common path and value

prefix. Then, we ψ-partition K1..9 in dimension V and obtain a partition table (light green)

that points to three new partitions: K1,4,8,9, K5,6, and K2,3,7. They contain all keys k for which

k.V [K1..9.gV] is 0x5D, 0x5E, or 0x5F, respectively (the values of the discriminative byte are

underlined). We drop K1..9’s longest common prefixes from these new partitions. We proceed

depth-first with partition K1,4,8,9 in Figure C.2c. We create node n2 as before and this time

we ψ-partition in dimension P and obtain three new partitions. Assuming a page can hold

up to two keys, the three new partitions K8, K9, and K1,4 each fit on one page and are not

partitioned further. In Figure C.2d we create the corresponding leaf nodes n3, n4, n5 for these

three partitions. After clustering leaves n3,n4,n5 (see Section C.4.3) we write them to disk,

release the memory, and proceed with K5,6. 2

C.4.2 Lazy Interleaving

Lazy interleaving stops to dynamically interleave the keys in a partition K if K is small enough
to fit on a page. Lazy interleaving stores the un-interleaved suffixes in the set n.refs of a leaf node
n, see Algorithm C.2. During subsequent searches all suffixes must be checked if they match the
given CAS query. In Section C.8.4 we show that lazy interleaving speeds up bulk-loading by a
factor of 20 without compromising query performance.

Algorithm C.2: LazyInterleaving(K,n)
1 n.D←⊥;
2 foreach key k ∈ K do
3 sP← k.P[K.gP, |k.P|];
4 sV ← k.V [K.gV , |k.V |];
5 n.refs← n.refs∪{(sP,sV ,k.R)};
6 Delete K;

Example C.7. Assuming two keys fit on a page, partitions K8, K9, and K1,4 in Figure C.2c are

lazily interleaved. We create the three leaf nodes n3, n4, and n5 in Figure C.2d. While n3 and n4

each represent a single key, node n5 stores the suffixes of keys {k8,k9}. 2

110 Chapter C. Scalable Content-and-Structure Indexing

C.4.3 Node Clustering

We cluster nodes into pages with the greedy right-sibling algorithm [KM06a] that, given a node
n, starts clustering at n’s rightmost child and grows a cluster leftwards until a page is full. Once
full, a page is written to disk and the memory used by the nodes is released. The leftmost siblings
are placed in the same page as n if they do not fill a page on their own. These nodes are clustered
with n’s siblings when node clustering is invoked on n’s parent. The pseudo code is shown in
Algorithm C.3.

Algorithm C.3: NodeClustering(n)
1 Compute n’s size and store it in n.size;
2 cluster,size← ({},0);
3 for b← 0xFF down to 0x00 do
4 if n.ptrs[b] 6= NIL then
5 if size+n.ptrs[b].size > PAGE_SIZE then
6 page_nr←WriteIndexPage(cluster);
7 for (b′,) ∈ cluster do n.ptrs[b′]← page_nr;
8 cluster,size← ({},0);
9 cluster← cluster∪{(b,n.ptrs[b])};

10 size← size+n.ptrs[b].size;

11 if size+n.size > PAGE_SIZE then
12 page_nr←WriteIndexPage(cluster);
13 for (b′,) ∈ cluster do n.ptrs[b′]← page_nr;
14 else n.size← n.size+ size;

Example C.8. Assume the page size is 100 bytes and the size of a pointer is 8 bytes. The size of

node n3 in Figure C.2d is 34 bytes; it consists of 10B for sP, 3B for sV , 1B for D, and 20B for

reference r7. We execute Algorithm C.3 on node n2. Its rightmost child n5 is written to its own

page since nodes {n4,n5} cannot be put in the same page (34+75 > 100). Nodes n3 and n4 are

clustered together, but n2 cannot be added since 34 ·3 > 100. 2

C.5 Proactive Partitioning

Proactive partitioning eliminates explicit scans to compute discriminative bytes during the ψ-
partitioning. Remember that we have to know K’s discriminative byte in dimension D to com-
pute ψ(K,D). Thus, in general we need two scans over K to compute ψ(K,D): the first scan

C.5 Proactive Partitioning 111

determines K’s discriminative byte and the second scan assigns the keys to their partitions. It is
not possible to combine these two scans since first we need to look at every key in K to compute
its discriminative byte dsc(K ,D) and only then we can ψ-partition K according to this byte. To
see why, consider a key k in K and assume dsc(K \{k},D) = g. If k differs from all other keys
at byte g−1 in D, the discriminative byte of K is g−1. Thus, without looking at every key we
cannot compute dsc(K ,D) and without that we cannot ψ-partition K.

To avoid scanning K twice we make the ψ-partitioning proactive by exploiting that ψ(K,D)

is applied hierarchically. This means we pre-compute the discriminative bytes of every new
partition Ki ∈ ψ(K,D) as we ψ-partition K. As a result, by the time Ki itself is ψ-partitioned,
we already know its discriminative bytes and can directly compute the partitioning. We only
need to explicitly compute the root partition’s discriminative bytes. The discriminative bytes of
subsequent partitions are computed proactively during the partitioning. This halves the scans
over the data during bulk-loading.

C.5.1 Implementation

Algorithm C.4 implements ψ(K,D) and returns a partition table T . We organize the keys in
a partition K at the granularity of pages so that we can seamlessly transition between keys in
memory (K.mptr) and on disk (K.fptr). A page is a fixed-length buffer that contains a variable
number of keys. K.mptr points to the head of a singly-linked list of pages, while K.fptr points to a
page-structured file on disk (see Figure C.3). Algorithm C.4 iterates first over the pages in K.mptr

and then those in K.fptr. For each key in a page line 7 determines the partition T [b] to which k

belongs by looking at its value b at the discriminative byte. Next we drop the longest common
path and value prefixes from k (lines 8–9). We proactively compute T [b]’s discriminative bytes
whenever we add a key k to T [b] (lines 10–17). Two cases can arise. If k is T [b]’s first key,
we initialize gP and gV with one past the length of k in the respective dimension (lines 10–12).
These values are valid upper-bounds for the discriminative bytes since keys are prefix-free. We
store k as a reference key for partition T [b] in refkeys[b]. If k is not the first key in T [b], we
update the upper bounds (lines 13–17) as follows. Starting from the first byte, we compare k

with reference key refkeys[b] byte-by-byte in both dimension until we reach the upper-bounds
T [b].gP and T [b].gV , or we find new discriminative bytes and update T [b].gP and T [b].gV . As
we iterate over K we incrementally release its memory-resident pages and re-use them in T (see
Section C.6).

112 Chapter C. Scalable Content-and-Structure Indexing

Algorithm C.4: ψ(K,D)

1

proactivley compute
discriminative bytes

Let T be a new partition table;
2 Let outpages be an array of 28 pages for output buffering;
3 Let refkeys be an array to store 28 composite keys;
4 while K contains more pages do
5 page← if K.mptr 6= NIL then pop(K.mptr) else read(K.fptr);
6 foreach key k ∈ page do
7 b← if D = P then k.P[K.gP] else k.V [K.gV];
8 k.P← k.P[K.gP, |k.P|];
9 k.V ← k.V [K.gV , |k.V |];

10 if T [b] = NIL then
11 T [b]← (|k.P|+1, |k.V |+1,NIL,NIL);
12 refkeys[b]← k;
13 else
14 k′,gP,gV ← (refkeys[b],1,1);
15 while gP < T [b].gP∧ k.P[gP] = k′.P[gP] do gP++;
16 while gV < T [b].gV ∧ k.V [gV] = k′.V [gV] do gV ++;
17 T [b].gP,T [b].gV ← (gP, gV);

18 if outpages[b] is full then
19 outpages[b]← FrontLoadingInsertion(T,b,outpages[b]);
20 Clear contents of page outpages[b];

21 Add k to outpages[b];

22 Delete page;

23 for b← 0x00 to 0xFF do
24 if T [b] 6= NIL then FrontLoadingInsertion(T,b,outpages[b]);

25 Delete K;
26 return T ;

C.5.2 Properties of the Partitioning

RCAS+ supports CAS queries with a value and a path predicate. We use range and prefix searches
to efficiently evaluate the predicates. With a range search we choose subtrees that intersect the
range predicate and with a prefix search we choose subtrees that match the path predicate. The
partitioning is order- and prefix-preserving to efficiently support range and prefix searches.

Property C.1 (Order-Preserving). The ψ-partitioning T = ψ(K,D) is order-preserving in di-

mension D. That is, all keys in a partition are either strictly greater or smaller in dimension D

C.5 Proactive Partitioning 113

than all keys from another partition:

∀Ki,K j ∈ T,Ki 6= K j :(∀k ∈Ki,∀k′ ∈K j : k.D < k′.D)∨

(∀k ∈Ki,∀k′ ∈K j : k.D > k′.D)

Example C.9. The ψ-partitioning ψ(K1..9,V) = {K1,4,8,9, K5,6, K2,3,7} is order-preserving in

dimension V . The value predicate [2018-07,2018-09) only needs to consider partition K1,4,8,9,

which spans keys from June to December, 2018 (range [0x5D000000, 0x5E000000)). 2

Property C.2 (Prefix-Preserving). The ψ-partitioning T = ψ(K,D) is prefix-preserving in di-

mension D. That is, keys in the same partition have a longer common prefix in dimension D than

keys from different partitions:

∀Ki,K j ∈ T,Ki 6= K j : |lcp(Ki,D)|> |lcp(Ki∪K j,D)|∧

|lcp(K ,D)|= |lcp(Ki∪K j,D)|

Example C.10. The ψ-partitioning ψ(K1..9,P) = {K1,4,8,9, K2,3, K5,6,7} is prefix-preserving

in dimension P. For example, K1,4,8,9 has a longer common path prefix lcp(K 1,4,8,9,P) =

/Source/ than keys across partitions, e.g., lcp(K 1,4,8,9∪K 2,3,P) = /. Because of this, query

path /Source/S*.swift only needs to consider partition K1,4,8,9. 2

Properties C.1 and C.2 guarantee a total ordering among partitions. The nodes in RCAS+ are
ordered by the value at the discriminative byte such that queries can quickly choose the correct
subtree (see [WBH20] for details about the query algorithm).

The third property ensures that ψ actually partitions the data (unlike, e.g., radix partitioning).

Property C.3 (Guaranteed Progress). Let K be a partition for which not all keys are equal

in dimension D. ψ(K,D) guarantees progress, i.e., ψ splits K into at least two partitions:

|ψ(K,D)| ≥ 2.

The ψ-partitioning ensures these three properties because we partition K at its discriminative
byte. If we partitioned the data before this byte we would not make progress, because every byte
before the discriminative byte is part of the longest common prefix. If we partitioned the data
after the discriminative byte the partitioning would no longer be order- and prefix-preserving.

Example C.11. K1..9’s discriminative value byte is the fifth byte. If we partitioned K1..9 at value

byte four we get {K1..9} and there is no progress since all keys have 0x00 at value byte four. If

114 Chapter C. Scalable Content-and-Structure Indexing

we partitioned K1..9 at value byte six we get {K4,8,9, K1,2,3,7, K5, K6}, which is neither order-

nor prefix-preserving in V . Consider keys k1,k2 ∈ K1,2,3,7 and k6 ∈ K6. The partitioning is not

order-preserving in V since k1.V < k6.V < k2.V . The partitioning is not prefix-preserving in V

since the longest common value prefix in K1,2,3,7 is 00000000, which is not longer than the

longest common value prefix of keys from different partitions since, e.g., lcp(K 1,2,3,7∪K 5,V) =

00000000. 2

C.6 Front-Loading

Depth-first bulk-loading together with node clustering minimizes the memory footprint and front-

loading uses the remaining memory to optimally buffer partitions. Front-loading keeps the par-
titions at the beginning of a partition table in memory to minimize the overall disk I/O during
bulk-loading. It exploits that Algorithm C.1 (lines 10–11) processes the partitions in a partition
table depth-first in ascending order. Thus, we allocate memory for the partitions at the beginning
of the partition table. A front-loading partition table contains a sequence of memory-resident par-
titions, followed by zero or one hybrid partition (i.e., partially in memory and on disk), followed
by a sequence of disk-resident partitions.

Definition C.5 (Front-Loading). A partition table T is front-loading iff there exists an index i,
0x00≤ i≤ 0xFF, such that

• ∀b < i,T [b] 6= NIL : T [b].mptr 6= NIL∧T [b].fptr = NIL

• ∀b > i,T [b] 6= NIL : T [b].mptr = NIL∧T [b].fptr 6= NIL

• T [i].mptr 6= NIL∨T [i].fptr 6= NIL

Example C.12. Partition table T 1..9 in Figure C.3 is front-loading since it has one memory-

resident partition T 1..9[0x5D] followed by two disk-resident partitions T 1..9[0x5E] and

T 1..9[0x5F] (there is no hybrid partition). 2

Assume we compute ψ(K,D) for a partition K and obtain the front-loading partition table T =

{K1,K2, . . .}, where K1 is the first partition. Once the bulk-loader has processed K1, it can re-use
the memory occupied by K1 since K1 is not used again.

Example C.13. Figure C.4 shows how front-loading is applied in a hierarchical partitioning. We

assume that two pages fit into memory. The root partition contains eight pages, two in memory

C.6 Front-Loading 115

NIL

NIL

(9,2,•,NIL)

(7,2,NIL,•)

(1,3,NIL,•)

NIL

NIL

0x00

0x5D

0x5E

0x5F

0xFF

...

...

Sources/Bag.swift$ 5DA8942A r7
Sources/Map.swift$ 5DA8942A r7

Sources/Scheduler.swift$ 5DBD978B r1
Sources/Signal.swift$ 5DA8948C r3

fs/ext3/inode.c$ 5EF29C59 r4
fs/ext4/inode.c$ 5EFB23C2 r5

crypto/ecc.h$ 5FBD94C4 r2
crypto/ecc.c$ 5FBD94C4 r2
fs/ext4/inode.c$ 5FBD3D5A r6

Figure C.3: Front-loading partition table T 1..9 = ψ(K1..9,V). Orange (gray) pages are stored in
memory (on disk).

and six on disk. We identify partitions by their pre-order number, which is the order in which the

partitions are recursively processed. For the illustration, we assume that ψ always creates two

partitions. When we ψ-partition 1, we obtain partitions 2 and 9. The two memory pages from 1
are used in 2, while 9 is disk-resident. Once the bulk-loader recursively processed 2, it has two

free pages available in memory. They are used when its sibling 9 is partitioned and, as a result,

10 is memory-resident. Had the bulk-loader initially used the two memory pages for 9 instead of

2, all of 2’s descendants would be disk-resident, which would incur a higher disk I/O. 2

C.6.1 Implementation

Algorithm C.5 inserts a page into a front-loading partition table T . It takes three parameters:
table T , the position b in the table where the page is to be inserted, and a pointer ptr to the page
in the output buffer of the caller (Algorithm C.4). Algorithm C.5 inserts the page into T [b] and
returns a pointer to a page that replaces the old page in the caller’s output buffer (this can be the
same page or a new page). The algorithm decides whether to keep the page in memory and add
it to T [b].mptr or write the page to disk at T [b].fptr. We first check if there exists a free page in
memory that can replace ptr in the caller’s output buffer. In this case, we add the page to T [b].mptr

and return a pointer to this free page in memory (lines 1–3). If no such free page exists, we try to
reclaim a memory-resident page from a partition T [b′], b′ > b. Starting from the last partition in
T , we walk towards partition T [b] and look for a partition T [b′] that contains a memory-resident
page (i.e., T [b′].mptr 6= NIL). If we find such a partition T [b′], we add ptr to T [b].mptr and we
move one memory-resident page from T [b′].mptr to disk at T [b′].fptr (lines 7–10). This frees a

116 Chapter C. Scalable Content-and-Structure Indexing

2,6

2,2

2,0

1,0 1,0

0,2

1,0 1,0

0,4

2,0

1,0 1,0

0,2

1,0 1,0

read: 6

write: 6
read: 6

write: 4
read: 4

write: 0
read: 0
total: 26

1

2

3 6

9

10 13

4 5 7 8 11 12 14 15

x,y partition (x pages in memory, y on disk) 1,. . .,15 processing order
memory-resident (y = 0) disk-resident (x = 0) hybrid

Figure C.4: Front-loading during bulk-loading

page in memory that is returned to the caller. Otherwise, we write the page to disk at T [b].fptr

and ptr itself is returned to the caller (line 11).

Algorithm C.5: FrontLoadingInsertion(T,b,ptr)

1 if a free page in memory exists then
2 push(T [b].mptr,ptr);
3 return pointer to a free page in memory;
4 else
5 b′← 0xFF;
6 while b′ > b∧ (T [b′] = NIL∨T [b′].mptr = NIL) do −−b′;
7 if b′ > b then
8 push(T [b].mptr,ptr);
9 ptr← pop(T [b′].mptr);

10 write(T [b′].fptr,ptr);
11 else write(T [b].fptr,ptr);
12 return ptr;

C.6.2 Analysis

Theorem C.1. Algorithm C.5 inserts a page into a front-loading partition table in O(1) time.

Proof. If there exists a free page in memory we add the page at the front of the linked list
T [b].mptr in O(1) time. Otherwise, we try to reclaim a memory-resident page from a partition
T [b′], b′ > b, in O(1) time since there are at most 28 partitions.

C.7 Analytical Evaluation 117

Theorem C.2. Front-loading minimizes the disk I/O of Algorithm C.1 if memory-resident parti-

tions are processed in memory.

Proof. We consider one invocation of T = ψ(K,D) and look at T ’s memory-resident, hybrid,
and disk-resident partitions. Since memory-resident partitions are processed in memory they
incur no disk I/O other than writing the final index to disk. Let the hybrid partition (if one exists)
be K j. To decrease K j’s and its descendants’ disk I/O, we need to steal memory from a memory-
resident partition Ki that appears before K j in T . This turns Ki into a hybrid or disk-resident
partition and thus its disk I/O (and that of its descendants) increases. The disk I/O incurred by
K j’s descendants remains unchanged since by the time they are processed, Algorithm C.1 has
already reclaimed the memory used by Ki and its descendants. The same is true for disk-resident
partitions. Thus, stealing memory from a partition that appears before cannot decrease disk
I/O.

C.7 Analytical Evaluation

C.7.1 I/O Overhead

We analyze the I/O overhead of Algorithm C.1 for a uniform data distribution where RCAS+

is balanced and for a maximally skewed distribution where RCAS+ is unbalanced. The I/O
overhead is the number of page I/Os without reading the input and writing the output (the index).
We use N, M, and B for the number of input keys, the number of keys that fit into memory, and
the number of keys that fit into a page, respectively [AV88].

If the data is uniformly distributed, the ψ-partitioning splits a partition into equally sized parti-
tions. With a fixed fanout f the ψ-partitioning splits a partition into f , 2≤ f ≤ 28, partitions.

Theorem C.3. The I/O overhead to build RCAS+ with Algorithm C.1 from uniformly distributed

data is ⌈N
B

⌉
−
⌈M

B

⌉
+2×

⌈
log f

⌈
N
M

⌉⌉
∑
i=1

(⌈N
B

⌉
− f i−1

⌈M
B

⌉)
Proof. The term dN

B e−d
M
B e is the cost to read the root partition during the first ψ-partitioning,

with dM
B e pages being buffered during the first scan when computing the root partition’s discrim-

inative bytes. There are dlog f d N
Mee levels before partitions fit completely into memory. At level

118 Chapter C. Scalable Content-and-Structure Indexing

i we have f i partitions due to f i−1 ψ-partitionings on the upper level. Front-loading guarantees
that each run of ψ(K,D) can keep dM

B e pages in memory (see Figure C.4). Therefore, we read
and write dN

B e− f i−1dM
B e pages on level i.

Example C.14. We compute the disk I/O for the tree in Figure C.4 with N = 16, M = 4, B = 2,

and f = 2. At level i = 0 we read 16
2 −

4
2 = 6 pages to ψ-partition the root partition. There

are dlog2d16
4 ee = 2 intermediate levels where we recursively partition the data. The partitions

at level i = 1 are created through f i−1 = 1 ψ-partitionings in the upper level, thus the disk I/O

on level 1 is 2(16
2 − 1× 4

2) = 12. The partitions at level i = 2 are created through f i−1 = 2
ψ-partitionings in the upper level, thus the disk I/O on level 2 is 2(16

2 −2× 4
2) = 8. In total, the

disk I/O is 6+12+8 = 26. 2

For maximally skewed data RCAS+ deteriorates to a tree whose height is linear in the number of
keys in the dataset.

Theorem C.4. The I/O overhead to build RCAS+ with Algorithm C.1 from maximally skewed

data is ⌈N
B

⌉
−
⌈M

B

⌉
+2×

N−M+B

∑
i=1

(⌈N− i
B

⌉
−
⌈M

B

⌉
+1
)

Proof. The term dN
B e−d

M
B e is the same as before. We assume that ψ(K,D) returns two partitions

where the first contains one key and the second contains all other keys. Thus, on each level of the
partitioning we have two partitions Ki,1 and Ki,2 such that |Ki,1|= 1 and |Ki,2|= N− i. Partition
Ki,1 occupies one page in memory and no page on disk. Ki,2 occupies dM

B e−1 pages in memory
and dN−i

B e−d
M
B e+1 pages on disk. Setting the latter to zero and solving for i shows that there

are are i = N−M+B levels before partition Ki,2 fits completely into memory.

Example C.15. We use the same parameters as in the previous example but assume the data is

maximally skewed. The cost 16
2 −

4
2 = 6 to ψ-partition the root partition stays the same. There

are 16− 4+ 2 = 14 levels before the partitions fit into memory. For example, at level i = 1 we

write and read d16−1
2 e−d

4
2e+1 = 7 pages. In total, the I/O overhead is 104 pages. 2

Theorem C.1. The I/O overhead to build RCAS+ with Algorithm C.1 depends on the data distri-

bution and is lower-bounded by O(N−M
B log(N

M)) and upper-bounded by O(N−M
B (N−M+B)).

Proof. The lower-bound follows from Lemma C.3. In each level O(N−M
B) pages are transferred

and there are O(log(N
M)) levels in the partitioning. The base of the logarithm is upper-bounded by

C.8 Experimental Evaluation 119

f = 28 since we ψ-partition at the granularity of bytes. The upper-bound follows from Lemma
C.4. In each level O(N−M

B) pages are transferred and there are O(N−M+B) levels in the worst
case.

Note that, since RCAS+ is trie-based and keys are encoded by the path from the root to the
leaves, the height of the index is bounded by the length of the keys. The worst-case is unlikely in
practice because it requires that the lengths of the keys is linear in the number of keys. Typically,
the key length is logarithmic in the number of keys and at most tens or hundreds of bytes. We
show in Section C.8 that building RCAS+ performs close to the best case on real world data.

C.7.2 Space Overhead

Algorithm C.1 needs memory for nodes before the nodes have been clustered into pages and
written to disk, and for other temporary data structures. This is the space overhead of Algorithm
C.1.

Theorem C.5. Algorithm C.1’s space overhead is O(h ·b), where h is the height of RCAS+ and

b is the page size.

Proof. Since Algorithm C.1 processes partitions depth-first, it requires O(h · b) memory for
nodes, partition tables, and I/O buffers. Since nodes are clustered in post-order, we need to
keep the O(h) ancestors of the current node n in memory and the size of a node is at most
O(b). In addition, we need to keep some of n’s siblings and their descendants in memory before
they are clustered. The number of siblings is upper-bounded by 28 and each sibling with its
descendants requires at most O(b) memory because if they required more than that, the greedy
node-clustering algorithm would have written them to disk already. There exist at most O(h)

partition tables at the same time, each requiring O(1) memory. At most one ψ-partitioning is
executed at the same time and it uses one input page and 28 output pages, each of size O(b).

C.8 Experimental Evaluation

Setup. We use a Debian 10 server with 80 cores and 400 GB main memory. The machine has
six hard disks, each 2 TB big, that are configured in a RAID 10 setup. We use a page size of
16 KB. The code is written in C++ and compiled with g++ 8.3.0.

120 Chapter C. Scalable Content-and-Structure Indexing

Dataset. We use the GitLab data from the SWH archive, which contains all archived copies
of publicly available GitLab repositories up to 2020-12-15. The GitLab dataset contains
914593 archived repositories, which correspond to a total of 120071946 unique revisions and
457839953 unique files. For all revisions in the GitLab dataset we index the commit time and the
modified files (equivalent to “commit diffstats” in version control system terminology). In total,
we index 6891972832 composite keys similar to Table C.1. The average length of a composite
key is 80 bytes. The GitLab dataset (without the contents of the source code files) is 1.6 TB big
and the 6.9 billion keys consume 550 GB. In the following we refer to the keys that are indexed
as the GitLab dataset.

Reproducibility. The code, the dataset, and instructions how to reproduce our experiments is
available online.3

C.8.1 Scalability of Depth-First Bulk-Loading

We compare RCAS+ to RCAS [WBH20], Postgres (version 13.2), and GNU sort (version 8.3).
To compare with Postgres we create a table data(P,V,R), similar to Table C.1, and create a
composite B+ tree on attributes path and value. Postgres creates a B+ tree by sorting the data and
then building the index bottom up, level by level. We compare our bulk-loading algorithm with
GNU sort since sorting is a pre-requisite of many bulk-loading algorithms. All approaches are
run single-threaded and we configure RCAS+, Postgres, and GNU sort to use 300 GB of memory.
The memory size of RCAS cannot be configured; it uses the available memory (400 GB) and
crashes once it runs out of memory and the swap space provided by operating system (OS).

50 100
0

0.5

1

1.5

(a) Input Size [GB]

R
un

tim
e

[h
]

RCAS+ RCAS Postgres GNU sort

0 200 400 600
0

5

10

(b) Input Size [GB]

R
un

tim
e

[h
]

Figure C.5: Scaling RCAS+

3https://github.com/k13n/scalable_rcas

https://github.com/k13n/scalable_rcas

C.8 Experimental Evaluation 121

In Figure C.5a we increase the input size until RCAS crashes and in Figure C.5b we continue
until we reach the full GitLab dataset. Note that building RCAS+ is faster than RCAS even
though RCAS+ is written to disk. One reason is that RCAS+ uses lazy interleaving, which stops
the hierarchical partitioning early, while RCAS breaks partitions down until a partition contains
a single key. Additionally, RCAS+ proactively computes discriminative bytes, which reduces the
number of scans over the data. Clearly, RCAS does not scale. It crashes for inputs larger than
100 GB since it runs out of memory. The sharp increase in RCAS’s runtime before it crashes is
due to swapping when the OS runs out of memory.

RCAS+ scales near-linearly and does not deteriorate when the input size exceeds the available
memory (300 GB). We observed that for Postgres and GNU sort the OS started swapping pages
from memory to disk for inputs > 400 GB, despite limiting the available memory to 300 GB.
This explains Postgres’ and GNU sort’s sharp increase for inputs > 400 GB.

On the full GitLab dataset, the RCAS+ index is 464 GB big and the B+ tree with fill-factor 100%
is 451 GB big. RCAS+ is slightly bigger than the B+ tree because it stores the 20 byte long
revisions in the index, while B+ tree stores pointers of size 6 bytes to tuples in table data that
contain the revisions.

C.8.2 Query Performance

We show that RCAS+ maintains RCAS’s excellent query performance by comparing RCAS+ to
RCAS and Postgres’ B+ tree. For an in-depth evaluation of the query performance of RCAS,
and by extension RCAS+, we refer to [WBH20]. For Postgres we create two composite B+ trees:
one on attributes (P,V), and one on attributes (V,P). We limit ourselves to CAS queries that
can be expressed in SQL. We use the % wildcard in the query path to match all files in a certain
subdirectory, e.g., the query path /a/b/% matches all files located arbitrarily deeply in directory
/a/b.

SELECT COUNT(*) FROM data

WHERE P LIKE ’@path’ AND V BETWEEN @start AND @end;

Table C.2 shows the runtime of 100 CAS queries that on average match about 180k keys
(0.002%) in the GitLab dataset. We evaluate these queries on the GitLab dataset and a 100 GB
subset since RCAS cannot be built for the full dataset. For RCAS+ and the B+ trees we look at
the runtime with cold caches, where data must be read from disk, and warm caches. Since RCAS

122 Chapter C. Scalable Content-and-Structure Indexing

is memory-based, we report the runtime for warm caches only. RCAS+ outperforms the B+ trees
since it simultaneously evaluates the path and value predicate of a CAS query, while a composite
index evaluates one after the other. This allows RCAS+ to prune subtrees early and gives it its
robust query performance. RCAS+ is slightly slower than RCAS when the data fits into memory
since RCAS is based on a memory-optimized trie.

Table C.2: CAS Query Performance

100 GB GitLab subset Full GitLab dataset
cold cache warm cache cold cache warm cache

RCAS+ 0.82 s 0.03 s 1.54 s 0.05 s
RCAS N/A 0.01 s N/A N/A
B+ Tree (P,V) 27.41 s 0.50 s 34.85 s 1.32 s
B+ Tree (V,P) 8.39 s 0.26 s 9.52 s 1.05 s

C.8.3 Node Clustering

We use node clustering to align clustered nodes to pages. Figures C.6a and C.6b show the
internal and external depth of leaf nodes, respectively. The internal (external) depth of a leaf is
the number of nodes (pages) on the path from the root to the leaf. Clearly, node clustering is
effective: it reduces the average depth from 7 (internal) to 5 (external) and the maximum depth
from 64 (internal) to 14 (external). Figures C.6c and C.6d show the fanout of nodes and pages,
respectively. The fanout of a page is the number of outgoing pointers, which is five for the root
page in Figure C.1. Figure C.6c shows that on average a partitioning yields nodes with a fanout
of 10 and node clustering increases the fanout to 15 per page. Node clustering groups on average
eight nodes into one page, see Figure C.6e. Figure C.6f shows the page utilization of RCAS+,
i.e., what percentage of a page is occupied. The average page utilization is 76% and half of all
pages have a page utilization of 85% or more.

C.8.4 Lazy Interleaving

Lazy interleaving stops to dynamically interleave keys in a partition when the partition fits on a
page. This speeds up bulk-loading by a factor of 20 (see Figure C.7a) because about 40 times
fewer partitions are created.

C.8 Experimental Evaluation 123

0 5 10 15
0

10

20

30
Avg: 6.9

(a) Internal leaf depth

Fr
eq

ue
nc

y
[%

]

0 5 10 15
0

10

20

30
Avg: 4.9

(b) External leaf depth

Fr
eq

ue
nc

y
[%

]

0 10 20 30 40
0

10

20

30
Avg: 9.5

(c) Node fanout

Fr
eq

ue
nc

y
[%

]

0 10 20 30 40
0

10

20

30
Avg: 14.9

(d) Page fanout

Fr
eq

ue
nc

y
[%

]

0 20 40
0

5

10

15

20

Avg: 8.0

(e) Nodes per page

Fr
eq

ue
nc

y
[%

]

0 50 100
0

5

10

15

20

Avg: 76.2%

(f) Page utilization [%]

Fr
eq

ue
nc

y
[%

]

Figure C.6: Structure of the RCAS+ index

Lazy interleaving improves the performance of the CAS queries from Section C.8.2 on cold
caches by 8% and on warm caches by 45% (see Figure C.7b), because once we reach a leaf
page, often all suffixes in a leaf node match the query and a linear scan of these suffixes is faster
than traversing the corresponding subtree that is created without lazy interleaving. Thus, lazy
interleaving improves bulk-loading time and query performance.

C.8.5 Proactive Partitioning

RCAS+ proactively computes the discriminative bytes during the ψ-partitioning to reduce disk
I/O. We compare proactive partitioning with the two-pass approach, which scans a partition once
to compute the discriminative bytes and a second time to partition the data. Similar to Algorithm

124 Chapter C. Scalable Content-and-Structure Indexing

20 40 60 80 100

10−1

100

101

Input Size [GB]
(a) Bulk-Loading Performance

R
un

tim
e

[h
]

Lazy Interleaving (LI) Full Interleaving (FI)

cold cache
0

0.5

1
LI FI

R
un

tim
e

[s
]

warm cache
0

0.02

0.04

0.06

LI

FI

(b) CAS Query Performance

Figure C.7: Lazy interleaving improves bulk-loading runtime

C.4 the two-pass approach computes the discriminative bytes by picking a reference key and
comparing it to all other keys.

16 32 64 128 256
0

1

2

3

4

Memory Size [GB]

D
is

k
I/

O
[T

B
]

Proactive Two-Pass

16 32 64 128 256
0

5

10

15

Memory Size [GB]

R
un

tim
e

[h
]

Figure C.8: Discriminative byte computation

In Figure C.8a we measure the disk I/O during bulk-loading, which consists of reading the input
data, writing and reading intermediate partitions, and writing the final RCAS+ index. Increasing
the memory size reduces the disk I/O because more intermediate partitions can be kept in mem-
ory. Proactively computing the discriminative bytes outperforms two-pass because it reads only
the root partition twice, while two-pass needs to scan every partition twice. The difference is
more pronounced if the memory size is small because there are more disk-resident partitions.

We compare the bulk-loading runtime of the two approaches in Figure C.8b. We use direct I/O
that reads and writes partitions directly from/to disk and bypasses OS caches to avoid measuring
caching effects. Building RCAS+ with proactive partitioning is faster than with the two-pass
approach because bulk-loading is I/O-bound and the disk I/O of proactive partitioning is lower.

C.8 Experimental Evaluation 125

C.8.6 Front-Loading

Front-loading buffers partitions in memory during bulk-loading. Figure C.9 shows how memory
is distributed in the root partition table when we bulk-load RCAS+ with 100 GB memory. The
root partition table is obtained by ψ-partitioning the root partition in dimension V . The x-axis
shows the index of the partition and the y-axis shows the percent of all pages that are located
in a partition. Front-loading keeps the first partitions in the table memory-resident, followed by
one hybrid partition (0x51) and a sequence of disk-resident partitions. The partitions are not
equally big because the size of a partition depends on the data distribution. In the GitLab dataset
dimension V corresponds to the commit time of a revision and, e.g., the hybrid partition 0x51
contains revisions from January to August, 2013. Since the amount of archived software artifacts
grows over time [RCZ20], the size of partitions also increases over time.

0x30 0x40 0x50
0

2

4

6

8

Partition Number

Pa
ge

s
[%

]

Memory Disk

Figure C.9: Memory distribution in root partition table

We compare front-loading with a baseline, termed all-or-nothing, that keeps partitions com-
pletely in memory or on disk. With all-or-nothing, the ψ-partitioning ψ(K,D) = {K1,K2, . . .}
reads K from disk and writes all Ki to disk as long as K does not fit into memory. Once K fits
into memory, it is processed there.

In Figure C.10a we measure the disk I/O as we increase the memory size. While front-loading
is able to use the additional memory to reduce disk I/O, all-or-nothing does not improve as we
increase the memory size beyond 64 GB. This is because the GitLab dataset (550 GB) does not
fit into memory, but every subsequent partition is smaller than 64 GB. Thus, all-or-nothing reads
the root partition and writes all resulting partitions do disk, whereas front-loading keeps some
of them in memory. For the bulk-loading runtime in Figure C.10b we observe a similar pattern
as in Figure C.8b. The runtime improves proportionally with the disk I/O and thus front-loading
outperforms all-or-nothing.

126 Chapter C. Scalable Content-and-Structure Indexing

16 32 64 128 256
0

1

2

3

4

Memory Size [GB]

D
is

k
I/

O
[T

B
]

Front-Loading All-Or-Nothing

16 32 64 128 256
0

5

10

15

Memory Size [GB]

R
un

tim
e

[h
]

Figure C.10: Memory management

C.8.7 Cost Model

We evaluate the cost model from Lemma C.3 that measures the I/O overhead of our bulk-loading
algorithm for a uniform data distribution. The I/O overhead is the number of page transfers
to read/write intermediate results during bulk-loading. We multiply the I/O overhead with the
default page size of 16 KB to get the number of bytes that are transferred to and from disk. The
cost model in Lemma C.3 has four parameters: N, M, B, and f (see Section C.7). We set fanout
f = 10 since this is the average fanout of a node in RCAS+ for the GitLab dataset, see Figure
C.6c. The cost model assumes that M (B) keys fit into memory (a page). Therefore, we set
B = d16KB

80B e = 205, where 16 KB is the page size and 80 is the average key length (see Section
C.8.3). Similarly, if the memory size is 50 GB we can store M = d50GB

80B e = 625 million keys in
memory.

100 300 500
0

1

2

Input Size [GB]

I/
O

O
ve

rh
ea

d
[T

B
]

Actual I/O overhead Estimated I/O overhead

16 32 64 128 256
0

1

2

Memory Size [GB]

I/
O

O
ve

rh
ea

d
[T

B
]

Figure C.11: Cost model evaluation

In Figure C.11a we compare the actual and the estimated I/O overhead to bulk-load RCAS+ as we
increase the input size, keeping the memory size fixed at 50 GB. The estimated and actual cost are

C.9 Related Work 127

within 10% of each other. In Figure C.11b we vary the memory size and fix the GitLab dataset
as input. Increasing the memory size makes the estimate more accurate because the ratio N/M

between input and memory size in the cost model decreases. This ratio determines the number
of levels in the hierarchical partitioning before partitions fit completely into memory. If there are
only few levels before we reach small enough partitions that can be processed entirely in memory,
the hierarchical partitioning is more balanced and hence the estimated I/O matches the actual I/O
better (our cost model in Lemma C.3 assumes a balanced tree). The actual I/O overhead is lower
than the estimated overhead because the cost model assumes that B (the number of keys that fit
into a page) is constant, but in practice B increases since we drop the longest common prefixes
from each key during the partitioning and hence more keys fit into a page as we progress.

C.8.8 Summary

RCAS+ can be built faster and for larger input sizes than RCAS because it does not deteriorate
when the input size exceeds the memory size. RCAS+ scales because of the following tech-
niques. Node clustering aligns nodes on page-structured disks and shows a page utilization of
76%, on average. Lazy interleaving improves the bulk-loading runtime by a factor of 20 and im-
proves CAS query performance by up to 45%. Proactive partitioning reduces the disk I/O during
bulk-loading by 20% w.r.t. two-pass approach since it avoids unnecessary scans over the data to
compute the discriminative bytes. Front-loading cuts disk I/O by up to 30% by buffering inter-
mediate partitions. Lastly, our cost model for uniform data yields a good estimate that is within
20% of the true I/O overhead during bulk-loading even if the data is not uniformly distributed.

C.9 Related Work

Existing CAS indexes [CSF+01,KKNR04,LAAE06,MHSB15,STR+15] are not robust for CAS
queries because they either build separate indexes for content and structure that need to be joined
[KKNR04, MHSB15] or they fix the order of the dimensions a priori [CSF+01, LAAE06]. This
fails for CAS queries with large intermediate results and a small final result. The in-memory
RCAS index [WBH20] is robust since it tightly integrates the content and structure with its
dynamic interleaving scheme but it is not scalable. RCAS+ is the first robust and scalable CAS
index. The following five core techniques make this possible: lazy interleaving reduces the cost
of the dynamic interleaving; node clustering aligns nodes on pages to store RCAS+ on disk;

128 Chapter C. Scalable Content-and-Structure Indexing

proactive partitioning pre-computes the discriminative bytes during the partitioning; depth-first
bulk-loading has a small memory overhead; and front-loading manages what data is stored in the
remaining memory and what on disk. In the following we review relevant related techniques to
build index structures.

The standard technique to build B-trees is to sort the data with external sorting [Knu98] and
build the index bottom up [KPT91]. Ma et al. [MF14] use sort-based bulk-loading for the B-
trie [AZ09]. Sort-based bulk-loading does not work for RCAS+ because the dynamic interleaving
of all keys has to be computed before sorting, which is as expensive as building RCAS+ in the
first place. Space-filling curves like z-order are used to linearize keys [FKM+00, HS02, KF93,
KDZP19,QTCZ20]. These interleavings are static since they are applied to each key individually
and ignore the data distribution. They prioritize one dimension over another and have poor query
performance if keys contain long common prefixes since interleaving at a common prefix does
not partition the data [WBH20].

Arge et al. [Arg03,AHVV02] equip each node in a tree with a buffer. Insertions are first batched
at the root node’s buffer and they are flushed one level down when a buffer overflows. Batching
insertions allows I/O efficient bulk-loading. Since we need to look at all keys to dynamically
interleave them, inserting keys in small batches as in the buffer tree and related approaches
[AS13, dBSW97] is not possible.

Van den Bercken et al. [dBS01] build an index in memory top-down from a sample of the data,
attach disk-based buffers to each leaf node, insert the remaining keys into the leaf buffers, and
recursively call the algorithm on each leaf buffer. This and other sampling-based approaches
[AS10] do not work for RCAS+ because we cannot determine the dynamic interleaving from a
sample of the keys.

Ghanem et al. [GSM+04] allocate half the memory to build a tree in memory and half the mem-
ory is used as buffer that extends to disk if necessary. Keys are inserted one by one as long as the
tree has still space, after that keys are added to the buffer and each buffer is recursively processed.
Inserting keys one by one is not possible due to the dynamic interleaving, which is applied to
all keys at once. While Ghanem et al. use half the memory for nodes and half for buffering, our
algorithm uses only O(h ·b) memory for nodes, where h is the height of the tree and b is the page
size (see Lemma C.5), and front-loading uses the remaining memory for buffering.

Leis et al. [LKN13] build their trie-based main-memory index top-down by radix-partitioning
the data one byte after the other (starting from the most-significant byte). Radix partitioning

C.10 Conclusion and Outlook 129

groups keys together that have the same value for some of the keys’ bits/bytes and it is used,
e.g., for radix sorting [CBB+15, Knu98, OKFS19, PR14] and aggregation [MSL+15]. Radix
partitioning is order-preserving if keys are binary comparable [LKN13] and prefix-preserving
since it groups keys that have a common prefix. Radix partitioning does not guarantee progress
since partitioning at a byte that is the same for all keys does not partition the data.

Range partitioning splits a set of keys based on a given set of range splitters [GD90], which can
be derived, e.g., from quantiles [DNS91] or samples [MRL98]. It is used to, e.g., horizontally
partition (shard) the data in distributed database systems [HCZZ21]. Range partitioning is order-
preserving since the keys are split into non-overlapping ranges, but it is not prefix-preserving
because multiple partitions can share the same longest common prefix.

Hash partitioning uniformly maps keys from a large domain to a smaller domain using a pre-
defined hash function. It is widely used, e.g., in hash joins [BTAÖ15, KTM83] and aggregation
[MSL+15]. Standard hash functions do not consider the data distribution and hash partitioning
is neither order- nor prefix-preserving.

We cluster nodes to align them with a page-structured storage layout. Many approaches exist to
cluster nodes such that no cluster exceeds a given size limit [BZP+18, KM06a, KM06b, KK04,
KM77]. [KM77] minimizes the number of clusters, while [KK04] minimizes the height of the
tree. Kanne et al. [KM06a] cluster sibling subtrees with their right-sibling (RS) algorithm. We
use the RS algorithm since it is fast and scales to large datasets. RS does not guarantee a min-
imal number of clusters, but in practice the clustering is more compact than [KK04, KM77]. A
dynamic-programming algorithm has been proposed to find the minimal clustering but it is five
orders of magnitude slower than RS and only provides 10% fewer clusters [KM06b]. We cannot
use this dynamic programming algorithm since it loads the tree into memory before clustering.

C.10 Conclusion and Outlook

We propose RCAS+ that scales the RCAS index [WBH20] to large datasets. To build RCAS+

at scale we propose five techniques that optimize CPU, memory, and disk usage. Lazy inter-

leaving reduces the cost of the dynamic interleaving to interleave two-dimensional keys into a
one-dimensional byte-string. Node clustering aligns nodes on page-structured devices. Proac-

tive partitioning reduces disk I/O by pre-computing information in one level of the hierarchical
partitioning that is needed in the next level. Depth-first bulk-loading has only a small memory

130 Chapter C. Scalable Content-and-Structure Indexing

overhead and the remaining memory is used by front-loading to optimally buffer partitions dur-
ing the hierarchical partitioning. We evaluate our algorithm analytically and experimentally, and
we show-case RCAS+’s scalability by indexing the revisions of all public GitLab repositories
archived by Software Heritage, for a total of 6.9 billion modified files in 120 million commits
across 0.9 million repositories.

In terms of future work we are working on supporting updates in RCAS and RCAS+ [WPBH21].
We also plan to build RCAS+ in parallel to better utilize the CPU. Each partition created during
the partitioning can be processed in parallel, but the challenge is to assign the partitions equally
to the available CPU cores since the partitioning can be unbalanced depending on the data distri-
bution. In addition, memory management becomes more difficult since partitions in a partition
table are no longer processed sequentially from the first to the last partition.

131

APPENDIX D

Curriculum Vitae

Kevin Wellenzohn

Personal Data
Date of Birth: 10 May 1991

Citizenship: Italian
Address: Staatsstrasse 66

39020 Kastelbell-Tschars (BZ)
Italy

Phone: +39 349 527 25 46
email: wellenzohn@ifi.uzh.ch

Education
10.2015 to present PhD Student at the Database Technologies Group

University of Zurich, Switzerland
Supervisor: Prof. Michael Böhlen
Expected Graduation: February 2022

10.2013 to 07.2015 Master in Computer Science
Curriculum: Data and Knowledge Engineering
Free University of Bolzano, Italy
113/110 cum laude
Thesis: “Imputation of Missing Values in Highly Correlated Streams
of Time Series Data”
Supervisor: Prof. Johann Gamper

10.2010 to 07.2013 Bachelor in Computer Science and Engineering
Free University of Bolzano, Italy
113/110 cum laude
Thesis: “An Efficient Heuristic for Orienteering with Categories”
Supervisor: Prof. Sven Helmer

05.2005 to 06.2010 Gewerbeoberschule Schlanders, Italy
Final Grade: 100/100

Work Experience
10.2021 to present Data Engineer Smart-Dato GmbH

Project: Development of a blockchain-based a e-voting system.

10.2015 to present PhD Student at University of Zurich
Project: The aim of this work is to index the content and Structure of semi-structured,
hierarchical data.
Responsible: Prof. Johann Gamper

12.2013 to 10.2015 Research Assistant at Free University of Bolzano
Center for Information and Database Systems Engineering
Project: DASA. The aim of this work is the design, development, implementation
and evaluation of algorithmic solutions for the analysis of time series data in the agri-
culture sector. A specific focus is on the imputation of missing values and similarity
search of time series data.
Responsible: Prof. Johann Gamper

07.2012 to 12.2013 Research Assistant at Free University of Bolzano
Center for Information and Database Systems Engineering
Project: OSTAR. The aim of this work is to implement, test and evaluate efficient
algorithms for itinerary planning in the presence of categories and opening hours for
the points of interest. The algorithms are to be tested on both real world data and
artificial data.
Responsible: Prof. Johann Gamper, Prof. Sven Helmer

06.2011 to 09.2011
06.2010 to 09.2010
06.2009 to 09.2009

Summer Intern at Selimex GmbH, Latsch
Assisting the Head of Accounting in an internship at the accounting department of a
large food and fruit trading company in South Tyrol, Italy.

Publications
[1] K. Wellenzohn, M. H. Böhlen, and S. Helmer, “Dynamic interleaving of content and struc-

ture for robust indexing of semi-structured hierarchical data,” PVLDB, vol. 13, no. 10,
pp. 1641–1653, 2020.

[2] K. Wellenzohn, L. Popovic, M. H. Böhlen, and S. Helmer, “Inserting keys into the robust
content-and-structure (RCAS) index,” in ADBIS, 2021.

[3] K. Wellenzohn, M. H. Böhlen, A. Dignös, J. Gamper, and H. Mitterer, “Continuous impu-
tation of missing values in streams of pattern-determining time series,” in EDBT, pp. 330–
341, 2017.

[4] P. Bolzoni, S. Helmer, K. Wellenzohn, J. Gamper, and P. Andritsos, “Efficient itinerary
planning with category constraints,” in SIGSPATIAL, pp. 203–212, 2014.

Languages
German: Mother tongue
English: C1 (CAE certified)
Italian: B1

BIBLIOGRAPHY 135

Bibliography

[AAA+14] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm, Vinayak
Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Madhusudan Cheelangi, Khurram
Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron, Young-Seok Kim,
Chen Li, Guangqiang Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis Tso-
tras, Rares Vernica, Jian Wen, and Till Westmann. Asterixdb: A scalable, open
source bdms. PVLDB, 7(14):1905–1916, 2014. doi:10.14778/2733085.

2733096.

[ACZ18] Jean-François Abramatic, Roberto Di Cosmo, and Stefano Zacchiroli. Building
the universal archive of source code. Commun. ACM, 61(10):29–31, 2018. doi:
10.1145/3183558.

[AHVV02] Lars Arge, Klaus H. Hinrichs, Jan Vahrenhold, and Jeffrey Scott Vitter. Efficient
bulk operations on dynamic r-trees. Algorithmica, 33(1):104–128, 2002. doi:

10.1007/s00453-001-0107-6.

[Apa20] Apache. Apache Jackrabbit Oak. https://jackrabbit.apache.org/oak/,
2020. [Online; accessed May 2020].

[Arg03] Lars Arge. The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica, 37(1):1–24, 2003. doi:10.1007/s00453-003-1021-x.

https://doi.org/10.14778/2733085.2733096
https://doi.org/10.14778/2733085.2733096
https://doi.org/10.1145/3183558
https://doi.org/10.1145/3183558
https://doi.org/10.1007/s00453-001-0107-6
https://doi.org/10.1007/s00453-001-0107-6
https://jackrabbit.apache.org/oak/
https://doi.org/10.1007/s00453-003-1021-x

136 BIBLIOGRAPHY

[AS10] Lior Aronovich and Israel Spiegler. Bulk construction of dynamic clustered
metric trees. Knowl. Inf. Syst., 22(2):211–244, 2010. doi:10.1007/

s10115-009-0195-1.

[AS13] Daniar Achakeev and Bernhard Seeger. Efficient bulk updates on multiversion b-
trees. PVLDB, 6(14):1834–1845, 2013. URL: http://www.vldb.org/pvldb/
vol6/p1834-achakeev.pdf, doi:10.14778/2556549.2556566.

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, 1988. doi:10.1145/
48529.48535.

[AZ09] Nikolas Askitis and Justin Zobel. B-tries for disk-based string management. VLDB

J., 18(1):157–179, 2009. doi:10.1007/s00778-008-0094-1.

[BCF+10] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Ro-
bie, and Jérôme Siméon. XQuery 1.0: An XML query language (second edition).
W3C recommendation, W3C, December 2010. URL: https://www.w3.org/TR/
xquery/.

[BFF+15] Robert Brunel, Jan Finis, Gerald Franz, Norman May, Alfons Kemper, Thomas
Neumann, and Franz Färber. Supporting hierarchical data in SAP HANA. In ICDE,
pages 1280–1291, 2015. doi:10.1109/ICDE.2015.7113376.

[BG96] Ricardo A. Baeza-Yates and Gaston H. Gonnet. Fast text searching for regu-
lar expressions or automaton searching on tries. J. ACM, 43(6):915–936, 1996.
doi:10.1145/235809.235810.

[BKH+17] Radim Baca, Michal Krátký, Irena Holubová, Martin Necaský, Tomás Skopal, Mar-
tin Svoboda, and Sherif Sakr. Structural XML query processing. ACM Comput.

Surv., 50(5):64:1–64:41, 2017. doi:10.1145/3095798.

[BTAÖ15] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu. Main-memory
hash joins on modern processor architectures. TKDE, 27(7):1754–1766, 2015.
doi:10.1109/TKDE.2014.2313874.

[BZP+18] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. Hot: A
height optimized trie index for main-memory database systems. In SIGMOD, pages
521–534, 2018. doi:10.1145/3183713.3196896.

https://doi.org/10.1007/s10115-009-0195-1
https://doi.org/10.1007/s10115-009-0195-1
http://www.vldb.org/pvldb/vol6/p1834-achakeev.pdf
http://www.vldb.org/pvldb/vol6/p1834-achakeev.pdf
https://doi.org/10.14778/2556549.2556566
https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.1007/s00778-008-0094-1
https://www.w3.org/TR/xquery/
https://www.w3.org/TR/xquery/
https://doi.org/10.1109/ICDE.2015.7113376
https://doi.org/10.1145/235809.235810
https://doi.org/10.1145/3095798
https://doi.org/10.1109/TKDE.2014.2313874
https://doi.org/10.1145/3183713.3196896

BIBLIOGRAPHY 137

[CBB+15] Minsik Cho, Daniel Brand, Rajesh Bordawekar, Ulrich Finkler, Vincent Ku-
landaiSamy, and Ruchir Puri. PARADIS: an efficient parallel algorithm for in-
place radix sort. PVLDB, 8(12):1518–1529, 2015. doi:10.14778/2824032.
2824050.

[CD99] James Clark and Steve DeRose. Xml path language (xpath) version 1.0. W3C
recommendation, W3C, 1999. URL: https://www.w3.org/TR/xpath/.

[Cou20] CouchDB. CouchDB. http://couchdb.apache.org/, 2020. [Online; accessed
May 2020].

[CSF+01] Brian F. Cooper, Neal Sample, Michael J. Franklin, Gísli R. Hjaltason, and Moshe
Shadmon. A fast index for semistructured data. In VLDB, pages 341–350, 2001.
URL: http://www.vldb.org/conf/2001/P341.pdf.

[dBS01] Jochen Van den Bercken and Bernhard Seeger. An evaluation of generic bulk load-
ing techniques. In VDLB, pages 461–470, 2001. URL: http://www.vldb.org/
conf/2001/P461.pdf.

[dBSW97] Jochen Van den Bercken, Bernhard Seeger, and Peter Widmayer. A generic approach
to bulk loading multidimensional index structures. In VLDB, pages 406–415, 1997.
URL: http://www.vldb.org/conf/1997/P406.PDF.

[DCL18] Ali Davoudian, Liu Chen, and Mengchi Liu. A survey on NoSQL stores. ACM

Comput. Surv., 51(2):40:1–40:43, 2018. doi:10.1145/3158661.

[DCZ17] Roberto Di Cosmo and Stefano Zacchiroli. Software heritage: Why and how to
preserve software source code. In iPRES, 2017.

[DNRN15] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: Ultra-
large-scale software repository and source-code mining. ACM Trans. Softw. Eng.

Methodol., 25(1):7:1–7:34, 2015. doi:10.1145/2803171.

[DNS91] David J. DeWitt, Jeffrey F. Naughton, and Donovan A. Schneider. Parallel sorting on
a shared-nothing architecture using probabilistic splitting. In PDIS, pages 280–291,
1991. doi:10.1109/PDIS.1991.183115.

[FBK+13] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Franz Färber, and
Norman May. Deltani: an efficient labeling scheme for versioned hierarchical data.
In SIGMOD, pages 905–916, 2013. doi:10.1145/2463676.2465329.

https://doi.org/10.14778/2824032.2824050
https://doi.org/10.14778/2824032.2824050
https://www.w3.org/TR/xpath/
http://couchdb.apache.org/
http://www.vldb.org/conf/2001/P341.pdf
http://www.vldb.org/conf/2001/P461.pdf
http://www.vldb.org/conf/2001/P461.pdf
http://www.vldb.org/conf/1997/P406.PDF
https://doi.org/10.1145/3158661
https://doi.org/10.1145/2803171
https://doi.org/10.1109/PDIS.1991.183115
https://doi.org/10.1145/2463676.2465329

138 BIBLIOGRAPHY

[FBK+15] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Norman May, and
Franz Färber. Indexing highly dynamic hierarchical data. PVLDB, 8(10):986–997,
2015. doi:10.14778/2794367.2794369.

[FBK+17] Jan Finis, Robert Brunel, Alfons Kemper, Thomas Neumann, Norman May, and
Franz Färber. Order indexes: supporting highly dynamic hierarchical data in re-
lational main-memory database systems. VLDB J., 26(1):55–80, 2017. doi:

10.1007/s00778-016-0436-3.

[FF13] Daniela Florescu and Ghislain Fourny. Jsoniq: The history of a query language.
IEEE Internet Comput., 17(5):86–90, 2013. doi:10.1109/MIC.2013.97.

[FHK+02] Thorsten Fiebig, Sven Helmer, Carl-Christian Kanne, Guido Moerkotte, Julia
Neumann, Robert Schiele, and Till Westmann. Anatomy of a native XML
base management system. VLDB J., 11(4):292–314, 2002. doi:10.1007/

s00778-002-0080-y.

[FKM+00] Robert Fenk, Akihiko Kawakami, Volker Markl, Rudolf Bayer, and Shunji Osaki.
Bulk loading a data warehouse built upon a ub-tree. In IDEAS, pages 179–187,
2000. doi:10.1109/IDEAS.2000.880576.

[GD90] Shahram Ghandeharizadeh and David J. DeWitt. Hybrid-range partitioning strategy:
A new declustering strategy for multiprocessor database machines. In VLDB, pages
481–492, 1990. URL: http://www.vldb.org/conf/1990/P481.PDF.

[GGKP12] Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn N. Paulley. Robust query
processing (Dagstuhl Seminar 12321). Dagstuhl Reports, 2(8):1–15, 2012. doi:
10.4230/DagRep.2.8.1.

[Gra11] Goetz Graefe. Robust query processing. In ICDE, page 1361, 2011. doi:10.

1109/ICDE.2011.5767961.

[GSM+04] Thanaa M. Ghanem, Rahul Shah, Mohamed F. Mokbel, Walid G. Aref, and Jef-
frey Scott Vitter. Bulk operations for space-partitioning trees. In ICDE, pages 29–
40, 2004. doi:10.1109/ICDE.2004.1319982.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In VLDB, pages 436–445, 1997. URL:
http://www.vldb.org/conf/1997/P436.PDF.

https://doi.org/10.14778/2794367.2794369
https://doi.org/10.1007/s00778-016-0436-3
https://doi.org/10.1007/s00778-016-0436-3
https://doi.org/10.1109/MIC.2013.97
https://doi.org/10.1007/s00778-002-0080-y
https://doi.org/10.1007/s00778-002-0080-y
https://doi.org/10.1109/IDEAS.2000.880576
http://www.vldb.org/conf/1990/P481.PDF
https://doi.org/10.4230/DagRep.2.8.1
https://doi.org/10.4230/DagRep.2.8.1
https://doi.org/10.1109/ICDE.2011.5767961
https://doi.org/10.1109/ICDE.2011.5767961
https://doi.org/10.1109/ICDE.2004.1319982
http://www.vldb.org/conf/1997/P436.PDF

BIBLIOGRAPHY 139

[Has08] Ahmed E. Hassan. The road ahead for mining software repositories. In Frontiers

of Software Maintenance (FoSM), pages 48–57, 2008. doi:10.1109/FOSM.

2008.4659248.

[HCZZ21] Xialong He, Peng Cai, Xuan Zhou, and Aoying Zhou. Continuously bulk-loading
over range partitioned tables for large scale historical data. In ICDE, pages 960–971,
2021.

[Hil91] David Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück. Math-

ematische Annalen, 38:459–460, 1891.

[HM16] Ruining He and Julian J. McAuley. Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering. In WWW, pages 507–517,
2016. doi:10.1145/2872427.2883037.

[HS02] Gísli R. Hjaltason and Hanan Samet. Speeding up construction of PMR quadtree-
based spatial indexes. VLDB J., 11(2):109–137, 2002. doi:10.1007/

s00778-002-0067-8.

[HZW02] Steffen Heinz, Justin Zobel, and Hugh E. Williams. Burst tries: a fast, efficient
data structure for string keys. ACM Trans. Inf. Syst., 20(2):192–223, 2002. doi:
10.1145/506309.506312.

[JNS+97] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and Rama Kanneganti.
Incremental organization for data recording and warehousing. In VLDB, pages 16–
25, 1997.

[KCK+03] Howard Katz, Don Chamberlin, Michael Kay, Philip Wadler, and Denise Draper.
XQuery from the Experts: A Guide to the W3C XML Query Language. Addison-
Wesley, Boston, 2003.

[KDZP19] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Pal-
panas. Coconut: sortable summarizations for scalable indexes over static and
streaming data series. VLDB J., 28(6):847–869, 2019. doi:10.1007/

s00778-019-00573-w.

[KF93] Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In CIKM, pages 490–
499, 1993. doi:10.1145/170088.170403.

https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.1109/FOSM.2008.4659248
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1007/s00778-002-0067-8
https://doi.org/10.1007/s00778-002-0067-8
https://doi.org/10.1145/506309.506312
https://doi.org/10.1145/506309.506312
https://doi.org/10.1007/s00778-019-00573-w
https://doi.org/10.1007/s00778-019-00573-w
https://doi.org/10.1145/170088.170403

140 BIBLIOGRAPHY

[KK04] András Kovács and Tamás Kis. Partitioning of trees for minimizing height and
cardinality. Inf. Process. Lett., 89(4):181–185, 2004. doi:10.1016/j.ipl.

2003.11.004.

[KKNR04] Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F. Naughton, and Raghu Ra-
makrishnan. On the integration of structure indexes and inverted lists. In SIGMOD,
pages 779–790, 2004. doi:10.1145/1007568.1007656.

[KM77] Sukhamay Kundu and Jayadev Misra. A linear tree partitioning algorithm. SIAM J.

Comput., 6(1):151–154, 1977. doi:10.1137/0206012.

[KM06a] Carl-Christian Kanne and Guido Moerkotte. The importance of sibling clustering
for efficient bulkload of XML document trees. IBM Syst. J., 45(2):321–334, 2006.
doi:10.1147/sj.452.0321.

[KM06b] Carl-Christian Kanne and Guido Moerkotte. A linear time algorithm for optimal tree
sibling partitioning and approximation algorithms in natix. In VLDB, pages 91–102,
2006. URL: http://dl.acm.org/citation.cfm?id=1164137.

[Knu98] Donald Ervin Knuth. The art of computer programming, Volume III, Sorting and

Searching, 2nd Edition. Addison-Wesley, 1998.

[KPT91] Timothy M. Klein, Kenneth J. Parzygnat, and Alan L. Tharp. Optimal b-tree
packing. Inf. Syst., 16(2):239–243, 1991. doi:10.1016/0306-4379(91)

90017-4.

[KTM83] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. Application of hash
to data base machine and its architecture. New Gener. Comput., 1(1):63–74, 1983.
doi:10.1007/BF03037022.

[LAAE06] Hua-Gang Li, S. Alireza Aghili, Divyakant Agrawal, and Amr El Abbadi. FLUX:
content and structure matching of xpath queries with range predicates. In XSym,
pages 61–76, 2006. doi:10.1007/11841920_5.

[LC19] Chen Luo and Michael Carey. Lsm-based storage techniques: a survey. The VLDB

Journal, 29, 07 2019. doi:10.1007/s00778-019-00555-y.

[LH19] Jiaheng Lu and Irena Holubová. Multi-model databases: A new journey to handle
the variety of data. ACM Comput. Surv., 52(3):55:1–55:38, 2019. doi:10.1145/
3323214.

https://doi.org/10.1016/j.ipl.2003.11.004
https://doi.org/10.1016/j.ipl.2003.11.004
https://doi.org/10.1145/1007568.1007656
https://doi.org/10.1137/0206012
https://doi.org/10.1147/sj.452.0321
http://dl.acm.org/citation.cfm?id=1164137
https://doi.org/10.1016/0306-4379(91)90017-4
https://doi.org/10.1016/0306-4379(91)90017-4
https://doi.org/10.1007/BF03037022
https://doi.org/10.1007/11841920_5
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1145/3323214
https://doi.org/10.1145/3323214

BIBLIOGRAPHY 141

[LKN13] Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree: Artful
indexing for main-memory databases. In ICDE, pages 38–49, 2013. doi:10.

1109/ICDE.2013.6544812.

[LLS13] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The bw-tree: A b-
tree for new hardware platforms. In ICDE, 2013. doi:10.1109/ICDE.2013.
6544834.

[Mar99] Volker Markl. MISTRAL: Processing Relational Queries using a Multidimensional

Access Technique. PhD thesis, Technical University of Munich, 1999.

[MDB+21] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. World of code: enabling a
research workflow for mining and analyzing the universe of open source VCS data.
Empir. Softw. Eng., 26(2):22, 2021. doi:10.1007/s10664-020-09905-9.

[MF14] Dongzhe Ma and Jianhua Feng. A generic approach for bulk loading trie-based
index structures on external storage. In Web-Age Information Management WAIM,
volume 8485, pages 55–66, 2014. doi:10.1007/978-3-319-08010-9_8.

[MHSB15] Christian Mathis, Theo Härder, Karsten Schmidt, and Sebastian Bächle. XML in-
dexing and storage: fulfilling the wish list. Computer Science - R&D, 30(1), 2015.
doi:10.1007/s00450-012-0204-6.

[Mon20] MongoDB. MongoDB Indexing. https://docs.mongodb.com/v4.0/

indexes, 2020. [Online; accessed May 2020].

[Mor66] G.M. Morton. A computer oriented geodetic data base; and a new technique in file
sequencing. Technical report, IBM Ltd., 1966.

[Mor68] Donald R. Morrison. PATRICIA - practical algorithm to retrieve information coded
in alphanumeric. J. ACM, 15(4):514–534, 1968. doi:10.1145/321479.

321481.

[MRL98] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Approximate
medians and other quantiles in one pass and with limited memory. In SIGMOD,
pages 426–435, 1998. doi:10.1145/276304.276342.

https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.1007/s10664-020-09905-9
https://doi.org/10.1007/978-3-319-08010-9_8
https://doi.org/10.1007/s00450-012-0204-6
https://docs.mongodb.com/v4.0/indexes
https://docs.mongodb.com/v4.0/indexes
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/276304.276342

142 BIBLIOGRAPHY

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction

to Information Retrieval. Cambridge University Press, 2008. doi:10.1017/

CBO9780511809071.

[MS99] Tova Milo and Dan Suciu. Index structures for path expressions. In ICDT, pages
277–295, 1999. doi:10.1007/3-540-49257-7_18.

[MSL+15] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Färber.
Cache-efficient aggregation: Hashing is sorting. In SIGMOD, pages 1123–1136,
2015. doi:10.1145/2723372.2747644.

[NS08] Bradford G. Nickerson and Qingxiu Shi. On k-d range search with patricia tries.
SIAM J. Comput., 37(5):1373–1386, 2008. doi:10.1137/060653780.

[NY17] Shoji Nishimura and Haruo Yokota. QUILTS: multidimensional data partitioning
framework based on query-aware and skew-tolerant space-filling curves. In SIG-

MOD, pages 1525–1537, 2017. doi:10.1145/3035918.3035934.

[OCGO96] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Informatica, 33(4):351–385, 1996. doi:
10.1007/s002360050048.

[OKFS19] Omar Obeya, Endrias Kahssay, Edward Fan, and Julian Shun. Theoretically-
efficient and practical parallel in-place radix sorting. In SPAA, pages 213–224, 2019.
doi:10.1145/3323165.3323198.

[OM84] Jack A. Orenstein and T. H. Merrett. A class of data structures for associative search-
ing. In PODS, pages 181–190, 1984. doi:10.1145/588011.588037.

[OOP+04] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller,
and Nigel Westbury. Ordpaths: Insert-friendly XML node labels. In SIGMOD,
pages 903–908, 2004. doi:10.1145/1007568.1007686.

[PHD16] Danila Piatov, Sven Helmer, and Anton Dignös. An interval join optimized for
modern hardware. In ICDE, pages 1098–1109, 2016. doi:10.1109/ICDE.

2016.7498316.

[PR14] Orestis Polychroniou and Kenneth A. Ross. A comprehensive study of main-
memory partitioning and its application to large-scale comparison- and radix-sort.
In SIGMOD, pages 755–766, 2014. doi:10.1145/2588555.2610522.

https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1007/3-540-49257-7_18
https://doi.org/10.1145/2723372.2747644
https://doi.org/10.1137/060653780
https://doi.org/10.1145/3035918.3035934
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/3323165.3323198
https://doi.org/10.1145/588011.588037
https://doi.org/10.1145/1007568.1007686
https://doi.org/10.1109/ICDE.2016.7498316
https://doi.org/10.1109/ICDE.2016.7498316
https://doi.org/10.1145/2588555.2610522

BIBLIOGRAPHY 143

[PSZ20] Antoine Pietri, Diomidis Spinellis, and Stefano Zacchiroli. The software heritage
graph dataset: Large-scale analysis of public software development history. In MSR,
pages 138–142, 2020. doi:10.1145/3379597.3387510.

[QTCZ20] Jianzhong Qi, Yufei Tao, Yanchuan Chang, and Rui Zhang. Packing r-trees with
space-filling curves: Theoretical optimality, empirical efficiency, and bulk-loading
parallelizability. TODS, 45(3):14:1–14:47, 2020. doi:10.1145/3397506.

[RCZ20] Guillaume Rousseau, Roberto Di Cosmo, and Stefano Zacchiroli. Software prove-
nance tracking at the scale of public source code. Empir. Softw. Eng., 25(4):2930–
2959, 2020. doi:10.1007/s10664-020-09828-5.

[RMF+00] Frank Ramsak, Volker Markl, Robert Fenk, Martin Zirkel, Klaus Elhardt, and
Rudolf Bayer. Integrating the ub-tree into a database system kernel. In VLDB,
pages 263–272, 2000. URL: http://www.vldb.org/conf/2000/P263.pdf.

[Sam06] Hanan Samet. Foundations of multidimensional and metric data structures. Morgan
Kaufmann series in data management systems. Academic Press, 2006.

[SJM+17] Anil Shanbhag, Alekh Jindal, Samuel Madden, Jorge-Arnulfo Quiané-Ruiz, and
Aaron J. Elmore. A robust partitioning scheme for ad-hoc query workloads. In
SoCC, pages 229–241, 2017. doi:10.1145/3127479.3131613.

[SL76] Dennis G. Severance and Guy M. Lohman. Differential files: Their application
to the maintenance of large databases. ACM Trans. Database Syst., 1(3):256–267,
1976. doi:10.1145/320473.320484.

[STR+15] Dharma Shukla, Shireesh Thota, Karthik Raman, Madhan Gajendran, Ankur Shah,
Sergii Ziuzin, Krishnan Sundaram, Miguel Gonzalez Guajardo, Anna Wawrzyniak,
Samer Boshra, Renato Ferreira, Mohamed Nassar, Michael Koltachev, Ji Huang,
Sudipta Sengupta, Justin J. Levandoski, and David B. Lomet. Schema-agnostic
indexing with azure DocumentDB. PVLDB, 8(12):1668–1679, 2015. doi:10.

14778/2824032.2824065.

[SWK+02] Albrecht Schmidt, Florian Waas, Martin L. Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. Xmark: A benchmark for XML data manage-
ment. In VLDB, pages 974–985, 2002. doi:10.1016/B978-155860869-6/
50096-2.

https://doi.org/10.1145/3379597.3387510
https://doi.org/10.1145/3397506
https://doi.org/10.1007/s10664-020-09828-5
http://www.vldb.org/conf/2000/P263.pdf
https://doi.org/10.1145/3127479.3131613
https://doi.org/10.1145/320473.320484
https://doi.org/10.14778/2824032.2824065
https://doi.org/10.14778/2824032.2824065
https://doi.org/10.1016/B978-155860869-6/50096-2
https://doi.org/10.1016/B978-155860869-6/50096-2

144 BIBLIOGRAPHY

[TSK+10] Ilya Taranov, Ivan Shcheklein, Alexander Kalinin, Leonid Novak, Sergei D.
Kuznetsov, Roman Pastukhov, Alexander Boldakov, Denis Turdakov, Konstantin
Antipin, Andrey Fomichev, Peter Pleshachkov, Pavel Velikhov, Nikolai Zavarit-
ski, Maxim Grinev, Maria P. Grineva, and Dmitry Lizorkin. Sedna: native XML
database management system (internals overview). In SIGMOD, pages 1037–1046,
2010. doi:10.1145/1807167.1807282.

[WBH20] Kevin Wellenzohn, Michael H. Böhlen, and Sven Helmer. Dynamic interleaving
of content and structure for robust indexing of semi-structured hierarchical data.
PVLDB, 13(10):1641–1653, 2020. doi:10.14778/3401960.3401963.

[WPBH21] Kevin Wellenzohn, Luka Popovic, Michael Böhlen, and Sven Helmer. Inserting
keys into the robust content-and-structure (rcas) index. In ADBIS, pages 121–135,
2021. doi:10.1007/978-3-030-82472-3_10.

[ZLL+18] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G. Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. Surf: Practical range query
filtering with fast succinct tries. In SIGMOD, pages 323–336, 2018. doi:

10.1145/3183713.3196931.

https://doi.org/10.1145/1807167.1807282
https://doi.org/10.14778/3401960.3401963
https://doi.org/10.1007/978-3-030-82472-3_10
https://doi.org/10.1145/3183713.3196931
https://doi.org/10.1145/3183713.3196931

	Abstract
	Acknowledgments
	I Synopsis
	Introduction
	Running Example
	Related Work
	CAS Indexing
	Linearizing Multi-Dimensional Keys
	Building and Updating Indexes

	Challenges

	Contributions
	Dynamic Interleaving
	Robust Content-and-Structure (RCAS) Index
	Updating the RCAS Index
	Scalable RCAS+ Index

	Thesis Roadmap
	Conclusion
	Limitations
	Summary
	Future Work

	II Publications
	Dynamic Interleaving of Content and Structure for Robust Indexing of Semi-Structured Hierarchical Data
	Introduction
	Running Example
	Related Work
	Background
	Dynamic Interleaving
	Partitioning by Discriminative Bytes
	Interleaving
	Efficiency of Interleavings

	RCAS Index
	Trie-Based Structure of RCAS
	Physical Node Layout
	Bulk-Loading RCAS
	Querying RCAS

	Experimental Evaluation
	Setup and Datasets
	Impact of Datasets on RCAS's Structure
	Robustness
	Evaluation of Cost Model
	Space Consumption and Scalability
	Summary

	Conclusion and Outlook

	Inserting Keys into the Robust Content-and-Structure (RCAS) Index
	Introduction
	Background
	Insertion of New Keys
	Index Restructuring during Insertion
	Strict Restructuring
	Lazy Restructuring

	Utilizing an Auxiliary Index
	Analysis
	Experimental Evaluation
	Runtime of Strict and Lazy Restructuring
	Query Runtime
	Merging of Auxiliary and Main Index
	Summary

	Related Work
	Conclusion and Outlook

	Scalable Content-and-Structure Indexing
	Introduction
	Application Scenario
	Background
	Notation & Terminology
	Dynamic Interleaving in the RCAS Index

	The Scalable RCAS+ Index
	Depth-First Bulk-Loading
	Lazy Interleaving
	Node Clustering

	Proactive Partitioning
	Implementation
	Properties of the Partitioning

	Front-Loading
	Implementation
	Analysis

	Analytical Evaluation
	I/O Overhead
	Space Overhead

	Experimental Evaluation
	Scalability of Depth-First Bulk-Loading
	Query Performance
	Node Clustering
	Lazy Interleaving
	Proactive Partitioning
	Front-Loading
	Cost Model
	Summary

	Related Work
	Conclusion and Outlook

	Curriculum Vitae
	Bibliography

